www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikSplines
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Splines
Splines < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Splines: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 13.02.2013
Autor: Matrix22

Aufgabe
s(x)=  2x für 0<x<1
           [mm] x^2+1 [/mm] für 1<x<10
bezüglich der Zerlegung t= (0,1),(1,10) des Intervalls ( 0,10) ein linearer oder Quadratischer Spline ( Begründung)!

Hey Leute die Aufgabe ist kurz mir fehlt jeglicher Ansatz wie ich an dieser Aufgabe herangehen soll.

Kann mir bitte jemand das Prinzip erklären wäre sehr dankbar für eine gute Erklärung.

Danke


        
Bezug
Splines: Antwort
Status: (Antwort) fertig Status 
Datum: 07:32 Do 14.02.2013
Autor: angela.h.b.


> s(x)=  2x für 0<x<1
>             [mm]x^2+1[/mm] für 1<x<10
>  bezüglich der Zerlegung t= (0,1),(1,10) des Intervalls (
> 0,10) ein linearer oder Quadratischer Spline (
> Begründung)!
>  Hey Leute die Aufgabe ist kurz mir fehlt jeglicher Ansatz
> wie ich an dieser Aufgabe herangehen soll.
>  
> Kann mir bitte jemand das Prinzip erklären wäre sehr
> dankbar für eine gute Erklärung.

Hallo,

den Grundstein fürs Verständnis solltest Du selbst legen, indem Du mal nachschlägst und notierst, was ein linearer bzw. quadratischer Spline ist.
Dann kann's weitergehen.

LG Angela

>  
> Danke
>  

</x<10
</x<1


Bezug
                
Bezug
Splines: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:05 Do 14.02.2013
Autor: Matrix22

Ok.

Quadratisch-->auf Teilintervallen höchstens Polynom vom Grad 2 ( aber wie setze ich hier ein)?
stetigkeit in inneren Punkten???
Stückweiseableitung:
s´(x)=2
s2`(x)=2x


Ich verstehe nicht ganz wie man an solchen Aufgaben herangeht

Bezug
                        
Bezug
Splines: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Do 14.02.2013
Autor: angela.h.b.


> Ok.
>  
> Quadratisch-->auf Teilintervallen höchstens Polynom vom
> Grad 2 ( aber wie setze ich hier ein)?
>  stetigkeit in inneren Punkten???
>  Stückweiseableitung:
>  s´(x)=2
>  s2'(x)=2x

Hallo,

ja, bei quadratischen Spline dürfen die Polynome über den Teilintervallen höchstens vom Grad 2 sein, was bei Dir offenbar gegeben ist.
Weiter muß die Splinefunktion 2-1=1mal stetig diffbar sein.

Prüfen mußt Du also die Stetigkeit an den "Nahtstellen" (hier ist es ja bloß eine), und Du mußt gucken, ob an den Nahtstellen die Steigung von rechts und von links gleich sind, ob also an den Nahtstellen die ersten Ableitungen der Teilfunktionen übereinstimmen.

(Beim kubischen Spline müßte man prüfen, ob er zweimal stetig diffbar ist.)

LG Angela


Bezug
                                
Bezug
Splines: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:47 Do 14.02.2013
Autor: Matrix22

Danke ertmal ich glaub es verstanden zu haben.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]