www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenSprache einer Grammatik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Formale Sprachen" - Sprache einer Grammatik
Sprache einer Grammatik < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sprache einer Grammatik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Fr 23.09.2011
Autor: Harris

Aufgabe
Die Grammatik $G$ sei definiert durch [mm] $G=(\{S,T\},\{a,b\},\Phi,S) [/mm] mit
[mm] $\Phi$ [/mm] als Menge der Regeln
[mm] $S\rightarrow [/mm] aT$
[mm] $S\rightarrow [/mm] aTbT$
[mm] $T\rightarrow [/mm] aT$
[mm] $T\rightarrow [/mm] aTbT$
[mm] $T\rightarrow \varepsilon$ [/mm]

Welche Sprache wird durch $G$ erzeugt?

Hi!

Ich würde gerne wissen, was hier rauskommt.

Meiner Meinung nach werden alle Worte akzeptiert, welche ein führendes $a$ haben und die Anzahl der $b$ kleiner gleich der Anzahl der $a$ ist.

Stimmt das?

Gruß, Harris

        
Bezug
Sprache einer Grammatik: abba
Status: (Antwort) fertig Status 
Datum: 16:59 Fr 23.09.2011
Autor: Schadowmaster

moin,

Ich bin der Meinung du kriegt abba nicht gebastelt.
Dieses Wort würde ja deinen Bedingungen entsprechen, aber man kann es nicht bauen:
Fall 1:
S -> aT
nun hast du entweder das Wort a (indem du $T [mm] \rightarrow \epsilon$ [/mm] machst) oder aber du kriegst zwei führende a; beides bringt uns nicht zu abba.

Fall 2:
S -> aTbT
Hier muss, damit an zweite Stelle ein b kommt, das erste T auf [mm] $\epsilon$ [/mm] gehen (denn sonst hätte man wieder zwei führende a).
Also ergibt sich:
S -> aTbT -> abT
Hier gleiches Problem wie in Fall 1, wir erhalten entweder das Wort "ab" oder ein Wort, das mit "aba" beginnt.

Somit lässt sich "abba" nicht darstellen und deine Bedingungen passen noch nicht ganz.

Wie genau die Bedingungen aussehen müssen weiß ich grad nicht so genau, aber du musst eine Aussage über die Reihenfolge treffen, irgendwas in der Form "vor n bs müssen unbedingt m as stehen" oder so. ;)

MfG

Schadowmaster

Bezug
                
Bezug
Sprache einer Grammatik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Fr 23.09.2011
Autor: Harris

Ich hab mir inzwischen ein kleines Javaproggy gebastelt.
Ich kann ja mal die Wörter bis zur Länge 6 posten:

a
Wörter der Länge 1 = 1 Stück; 1 haben mehr a's; 0 haben gleich viele a's
aa
ab
Wörter der Länge 2 = 2 Stück; 1 haben mehr a's; 1 haben gleich viele a's
aaa
aab
aba
Wörter der Länge 3 = 3 Stück; 3 haben mehr a's; 0 haben gleich viele a's
aaaa
aaab
aaba
aabb
abaa
abab
Wörter der Länge 4 = 6 Stück; 4 haben mehr a's; 2 haben gleich viele a's
aaaaa
aaaab
aaaba
aaabb
aabaa
aabab
aabba
abaaa
abaab
ababa
Wörter der Länge 5 = 10 Stück; 10 haben mehr a's; 0 haben gleich viele a's
aaaaaa
aaaaab
aaaaba
aaaabb
aaabaa
aaabab
aaabba
aaabbb
aabaaa
aabaab
aababa
aababb
aabbaa
aabbab
abaaaa
abaaab
abaaba
abaabb
ababaa
ababab
Wörter der Länge 6 = 20 Stück; 15 haben mehr a's; 5 haben gleich viele a's

Sieht irgendwer eine Beschreibungssystematik?

Bezug
                        
Bezug
Sprache einer Grammatik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Sa 24.09.2011
Autor: Schadowmaster

Du kannst mittels $T [mm] \to [/mm] aT$ beliebig viele as erzeugen.
Deshalb muss nicht nur gelten, dass Anzahl as [mm] $\geq$ [/mm] Anzahl bs, sondern sogar:
Anzahl as [mm] $\geq$ [/mm] Anzahl bs, wenn man das Wort hinter dem letzten b abschneidet (also die "End-as" weglässt).

Also deine Wörter müssen mit a anfangen, können mit beliebig vielen a enden und wenn man das Wort hinter dem letzten b abschneidet so muss das verbleibende Wort mindestens so viele as wie bs enthalten.

Ob damit nun wirklich alle und genau alle Wörter charakterisiert werden kannst du ja nochmal ein wenig ausprobieren; ich glaube aber das passt so.


MfG

Schadowmaster

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]