www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikStabile Bahnen in R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Stabile Bahnen in R^n
Stabile Bahnen in R^n < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabile Bahnen in R^n: insbesondere für n>3
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 30.10.2007
Autor: benevonmattheis

Aufgabe
Das Äquivalent zum Keplerpotential in einem n-dimensionalen Raum (n>=3) ist [mm] V(r)=-c/r^{n-2} [/mm] mit c>0 und [mm] r=|\overrightarrow{r}|, \overrightarrow{r}=(x1,...,xn)(dieses [/mm] Zentralpotential führt zu einem Kraftfeld, dass für [mm] r\not=0 [/mm] divergenzfrei ist). Außerdem lässt sich zeigen, dass (neben der Energie) der (verallgemeinerte) Drehimpuls mit Betrag L erhalten ist und die Bahn in einer zweidimensionalen Ebene liegt.

Zeigen Sie mit Hilfe des Effektivpotentials, dass für n>3 KEINE stabile Bahnen möglich sind.

Hallo Leute,
zunächst gehe ich davon aus, das stabile Bahnen geschlossene Bahnen meint. Mein Ansatz ist, dass das Effektive Potential kein Minimum haben darf, damit es keine Potentialfalle gibt. Alles klar, das effektive Potential ist
Veff=V+L²/(2*mü*r²)=
[mm] -c/r^{n-2}+L²/(2*mü*r²) [/mm]
[mm] Veff'=(n-2)*c/r^{n-1}-L²/(mü*r^{3}) [/mm]
[mm] Veff''=-(n-2)*(n-1)c/r^{n}+3*L²/(mü*r^{4}) [/mm]

Ok, angenommen n=5:
[mm] Veff'=3*c/r^{4}-L²/(mü*r^{3}) [/mm]
[mm] =\underbrace{1/r^{3}}_{\not=0}*(3c/r-L²/mü)=0 [/mm]
--> r=3c*mü/L²
Veff''(r=3*c*mü/L²; [mm] n=5)=-12*c/r^{^5}+3*L²/(mü*r^{4}) [/mm]
[mm] =1/r^{4}*[-12cL²/(3c*mü)+3L²/mü] [/mm]
[mm] =1/r^{4}*L²/mü*(-4+3)<0 [/mm]
man hat also einen Hochpunkt, also gibts keine geschlossen Bahn.
Aber wie zeige ich das für alle n. Induktion wäre ne möglichkeit, allerdings muss ich ja zeigen, dass [mm] Veff'\not=0 [/mm] oder Veff'=0 UND Veff''<=0.
Wie macht man sowas?
Oder reicht eine "Physikerinduktion" indem ich noch n=4 und n=6 zeige? Ich meine, es ist ja schließlich Physik^^.
Danke Leute,
Benevonmattheis

        
Bezug
Stabile Bahnen in R^n: n nicht festlegen!
Status: (Antwort) fertig Status 
Datum: 22:40 Di 30.10.2007
Autor: rainerS

Hallo!

Dein Ansatz ist schon richtig, aber warum legst du n fest?


>  zunächst gehe ich davon aus, das stabile Bahnen
> geschlossene Bahnen meint. Mein Ansatz ist, dass das
> Effektive Potential kein Minimum haben darf, damit es keine
> Potentialfalle gibt. Alles klar, das effektive Potential
> ist
>  Veff=V+L²/(2*mü*r²)=
>  [mm]-c/r^{n-2}+L²/(2*mü*r²)[/mm]
>  [mm]Veff'=(n-2)*c/r^{n-1}-L²/(mü*r^{3})[/mm]
>  [mm]Veff''=-(n-2)*(n-1)c/r^{n}+3*L²/(mü*r^{4})[/mm]

Also:

[mm] V'_{\text{eff}} = \bruch{1}{mr^3} \left((n-2)cmr^{4-n} -L^2\right) \implies r = \left(\bruch{(n-2)cm}{L^2}\right)^{1/(n-4)}[/mm]

und in [mm]V''_{\text{eff}}[/mm] einsetzen.

  VIele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]