www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenStabilität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Stabilität
Stabilität < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:43 Mo 17.09.2012
Autor: judithlein

Hallo,

ich habe ein allgemeines Verständnisproblem was die Begriffe der "autonomen Systeme" und der "Stabilität" angeht.

Und zwar steht im Skript:
Ein autonomes System ist
[mm] \Phi'(t)=v(\Phi(t)) [/mm]
wobei v: M [mm] \to \IR [/mm] Vektorfeld, [mm] \Phi: [/mm] I [mm] \to [/mm] M.

Zunächst dazu: Ich verstehe diese Definition schon nicht richtig. Was verstehe ich hierunter genau? Ist das zum Beispiel einfach eine Differentialgleichung wie beispielsweise eine mit getrennten Veränderlichen: y' = f(x)*g(y) ?  
Dann noch zum allgemeinen Verständnis:
Ein Vektorfeld ist doch ein Feld, welches alle möglichen Kurven und Richtungen enthält, oder? Also auch die Kurve, welche Lösung der Dgl ist.

Dann noch zum Begriff der Stabilität von autonomen Systemen. Bedeutet das, das man die Gültigkeit der gefundenen Lösung für eine Dgl untersucht? Also das heißt, wenn ich beispielsweise für ein Intervall I eine maximale Lösung der Dgl gefunden habe, wie diese sich verhält, wenn das Intervall z.B. um c verschoben wird, also I+c.

Dann haben wir dazu die Definition eines kritischen Punktes:
Jedes [mm] x_{0} \in [/mm] M mit [mm] v(x_{0})=0 [/mm] heißt kritischer Punkt des Vektorfeldes v:M [mm] \to \IR^{n}. [/mm]

Das beutet ja, dass Nullstellen des Vektorfeldes kritische Punkte sind und was sagt mir das sonst noch in der Hinsicht auf die Stabilität?

Wäre wirklich dankbar, wenn jemand mir da zu etwas Durchsichtigkeit verhelfen kann!

Viele Grüße

        
Bezug
Stabilität: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 17.09.2012
Autor: fred97


> Hallo,
>  
> ich habe ein allgemeines Verständnisproblem was die
> Begriffe der "autonomen Systeme" und der "Stabilität"
> angeht.
>
> Und zwar steht im Skript:
> Ein autonomes System ist
>  [mm]\Phi'(t)=v(\Phi(t))[/mm]
>  wobei v: M [mm]\to \IR[/mm] Vektorfeld, [mm]\Phi:[/mm] I [mm]\to[/mm] M.
>  
> Zunächst dazu: Ich verstehe diese Definition schon nicht
> richtig. Was verstehe ich hierunter genau? Ist das zum
> Beispiel einfach eine Differentialgleichung wie
> beispielsweise eine mit getrennten Veränderlichen: y' =
> f(x)*g(y) ?  


Im einfachsten Fall, ja, wenn f(x)=1 für alle x [mm] \in [/mm] ..,

    also die DGL y'=g(y) ist das einfachste Beispiel füe eine autonome DGL.


> Dann noch zum allgemeinen Verständnis:
> Ein Vektorfeld ist doch ein Feld, welches alle möglichen
> Kurven und Richtungen enthält, oder? Also auch die Kurve,
> welche Lösung der Dgl ist.

Hä ?   Ein Vektorfeld ist eine Abbildung !

http://de.wikipedia.org/wiki/Vektorfeld

>  
> Dann noch zum Begriff der Stabilität von autonomen
> Systemen. Bedeutet das, das man die Gültigkeit der
> gefundenen Lösung für eine Dgl untersucht? Also das
> heißt, wenn ich beispielsweise für ein Intervall I eine
> maximale Lösung der Dgl gefunden habe, wie diese sich
> verhält, wenn das Intervall z.B. um c verschoben wird,
> also I+c.

Nein. Für obige Frage und die unten siehe:

http://www.lohnt-nicht.de/files/Stabilitaet.pdf

FRED

>  
> Dann haben wir dazu die Definition eines kritischen
> Punktes:
>  Jedes [mm]x_{0} \in[/mm] M mit [mm]v(x_{0})=0[/mm] heißt kritischer Punkt
> des Vektorfeldes v:M [mm]\to \IR^{n}.[/mm]
>  
> Das beutet ja, dass Nullstellen des Vektorfeldes kritische
> Punkte sind und was sagt mir das sonst noch in der Hinsicht
> auf die Stabilität?
>
> Wäre wirklich dankbar, wenn jemand mir da zu etwas
> Durchsichtigkeit verhelfen kann!
>  
> Viele Grüße


Bezug
                
Bezug
Stabilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mo 17.09.2012
Autor: judithlein

Ok habe es gelesen, allerdings hilft es mir nur bedingt weiter. Es stehen dort quasi fast die gleichen Definitionen. Also die Definition von einem kritischen Punkt wiederzugeben ist kein Problem, aber ich wüsste mal gerne in umgangssprachlicher Weise was das bedeutet. Anschaulich ist mir nicht so ganz klar was da passiert...???

Bezug
                        
Bezug
Stabilität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mo 17.09.2012
Autor: leduart

hallo
die Stellen an denen [mm] y'(t_0)=0 [/mm] also f(y)=0 ergeben doch mit den Anfangsbedingungen [mm] y(t_0)=y_0 [/mm]  die Lösung [mm] y=y_0 [/mm] die auf jeden fall Lösung der Dgl ist.
jetzt gibt es für die anderen Lösungen , die Möglichkeit,auf diese lösung zuzu laufen oder...
das liest du besser in dem Artikel, den fred zitiert hat nach.
Gruss leduart  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]