www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenStabilität DGL in Polarkoord.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Stabilität DGL in Polarkoord.
Stabilität DGL in Polarkoord. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität DGL in Polarkoord.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:28 Di 11.10.2011
Autor: Harris

Aufgabe
a) Schreiben Sie das Differentialgleichungssystem
[mm] \frac{d}{dt}x=px-y-x(x^2+y^2) [/mm]
[mm] \frac{d}{dt}y=x-py-y(x^2+y^2) [/mm]
in Polarkoordinaten [mm] $(r,\varphi)$ [/mm] mit $x=r [mm] \cos\varphi$,$y=r \sin\varphi$. [/mm]

b) Bestimmen Sie die Werte des Parameters [mm] $p\in\IR$, [/mm] für die die Gleichgewichtslage [mm] $0\in\IR^2$ [/mm] des Differentialgleichungssystems asymptotisch stabil ist.


Hi!

Ich weiß nicht, wie ich den zweiten Teil dieser Aufgabe angehen soll. Stabilität kann man ja ganz gut anhand der Transformation in Polarkoordinaten ablesen.

Die Lösung der a) lautet
[mm] r'=p\cos(2\varphi)r-r^3 [/mm]
[mm] \varphi'=1-p\sin(2\varphi) [/mm]


Meine Vermutung bei der b) lautet nun:

Fall I: p=0.
Dann erhält man die DGL [mm] $r'=-r^3, \varphi'=1$. [/mm] Da die Ableitung negativ ist, r stets positiv bleibt und autonome DGLn stets monotone Lösungen besitzen, wird der Abstand zum Nullpunkt immer kleiner. Die Winkelgeschwindigkeit ist konstant. Es ergibt sich also dem Ursprung annähernde Spirale.

Nun habe ich noch weitere Fallunterscheidungen angesetzt, diese wurden aber unnötig kompliziert. (Fall $0<p<1,p=1,p>1,p<0$)

Jetzt würde ich gern wissen, an welchem Punkt ich diese Aufgabe etwas vereinfachen kann. Wäre auch für einen anderen Lösungsansatz dankbar :)

Grüße,
Harris



Inzwischen habe ich bei Mathematica das Phasenportrait zeichnen lassen. Hier sieht man das alles ganz gut, nur wird meiner Meinung nach nicht ganz klar, ob die Lösungen stabil, oder asymptotisch stabil sind... Wie kann man das mathematisch fassen?
Seht selber:

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Stabilität DGL in Polarkoord.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:56 Do 13.10.2011
Autor: Harris

Hi!

Also, ich habe inzwischen bewiesen, dass für $-1<p<1$ der Nullpunkt asymptotisch stabil ist.
Außerdem habe ich gezeigt, dass für $|p|>1$ eine instabile Gleichgewichtslage vorliegt.

Jetzt fände ich es elegant zu zeigen, dass die Menge [mm] $\{p\in\IR : 0 \text{ ist asymptotisch stabile Gleichgewichtslage} \} [/mm] $ offen ist, so dass die asymptotische Stabilität für [mm] $p=\pm [/mm] 1$ ausgeschlossen ist.

Wie geht das? Gibts hierfür einen Satz?

Bezug
                
Bezug
Stabilität DGL in Polarkoord.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Sa 15.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Stabilität DGL in Polarkoord.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 13.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]