www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 So 22.10.2006
Autor: Rebeccab.

Aufgabe
[mm] a.)f(x)=3x^2-1/x^3 [/mm]
[mm] b.)f(x)=(4x^3-1)/(2x^2) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Kann mir jemand bei den beiden aufgaben helfen?...
bekomme bei
a.) [mm] 3*1/3x^3+1/2x^-2 [/mm]
und bei b leider irgendwie nur banane..*nichsogut..*

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 So 22.10.2006
Autor: PStefan

Hi,

> [mm]a.)f(x)=3x^2-1/x^3[/mm]
>  [mm]b.)f(x)=(4x^3-1)/(2x^2)[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Kann mir jemand bei den beiden aufgaben helfen?...
>  bekomme bei
> a.) [mm]3*1/3x^3+1/2x^-2[/mm]

[ok]
bessere Form
[mm] F(x)=x^{3}+\bruch{1}{2 x^{2}} [/mm]

>  und bei b leider irgendwie nur banane..*nichsogut..*

-->
[mm] f(x)=\bruch{4*x^{3}-1}{2*x^{2}} [/mm]
[mm] \integral{\bruch{4*x^{3}}{2*x^{2}} dx}+\integral{\bruch{-1}{2*x^{2}} dx} [/mm]
nun kannst du einmal kürzen und vereinfachen:
[mm] 2*\integral{x dx}-\bruch{1}{2}*\integral{x^{-2} dx}= [/mm]
[mm] 2*\bruch{x^{2}}{2}-\bruch{1}{2}*((-1)*x^{-1})= [/mm]
[mm] x^{2}+\bruch{1}{2x} [/mm]

Liebe Grüße
Stefan

Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 So 22.10.2006
Autor: Rebeccab.

Danke für deine Hilfe...
Hab aber nochn problem, weil ich bei [mm] f(x)=2(x-4)^2 [/mm]
die stamfunktion berechnen soll..hab ich also gemacht und
[mm] 2/3x^3-8x^2+3x [/mm] heraus...aber mein buch sagt da soll [mm] 1/2(x-4)^4 [/mm] herauskommen.....

meine rechnung war:
[mm] =2(x^2-8x+16)--- [/mm]

[mm] ..2/3x^3-8x^2+3x [/mm]

..is da irgendwo ein fehler ?

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 So 22.10.2006
Autor: ardik

Hallo Rebeccab.,

> ..is da irgendwo ein fehler ?

Ja, zwei. :-(
Aber einer davon schon in der Aufgabe selbst.

> mein buch sagt da soll [mm]1/2(x-4)^4[/mm] herauskommen.

Leite das doch mal ab.
Dann erhältst Du [mm] $f(x)=2(x-4)^3$ [/mm]
Es stimmt also der Exponent in der Aufgabe nicht.

>  [mm]=2(x^2-8x+16)[/mm]
>  
> [mm]2/3x^3-8x^2+3x[/mm]

Wo kommen denn $3x$ her? [kopfkratz]
Oder ist dir beim Tippen die "2" entglitten?

Mit einer 3 im Exponenten wird das Ganze natürlich etwas länger.
Vielleicht wurde in der Aufgabe auch erwartet, dass man "einfach sieht", dass $f(x)$ das Ergebnis einer einfachen Kettenregel ist?
Man könnte entsprechend auch $z=x-4$ substituieren, falls Ihr das schon kennt.

Schöne Grüße,
ardik

Bezug
                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 So 22.10.2006
Autor: Rebeccab.

hallo..
also irgendwie bin ich jetzt verwirrt..


also ich hab nochmal nachgeguckt und dort steht:
[mm] f(x)=2(x-4)^2 [/mm] und herauskommen soll [mm] F(x)=1/2(x-4)^4 [/mm]
....
aber wie kommt man darauf? das is irgendwir äußert merkwürdig..

Bezug
                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 So 22.10.2006
Autor: ardik

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Rebecca,

dann ist es ganz eindeutig ein Druckfehler im Buch.
Und zwar der Exponent in der Aufgabe. Wäre dort die Lösung falsch, dann müssten da gleich zwei Druckfehler sein, da sie nämlich dann $F(x)=\bruch{2}{3}(x-4)^3$.

Du weißt ja hoffentlich, das das Stammfunktion Bilden sozusagen das Gegenteil vom Ableiten ist.
Also kann man eine Stammfunktion immer auf ihre Richtigkeit prüfen, indem man sie ableitet (was ja meist erheblich einfacher ist).

Wenn wir aber von der Aufgabe aus dem Buch ausgehen, wie kann man auf obige Lösung kommen?
Mir fallen gleich drei Varianten ein ;-)

1. Das berüchtigte "scharfe Hinsehen"
Da da was Verschachteltes ist, ist anzunehmen, dass die (noch unbekannte) Stammfunktion per Kettenregel abzuleiten ist. Die Ableitung des Klammerinhaltes ist aber 1, also kann man die innere Ableitung "vergessen" und ich brauche nur noch nachzudenken, wie ich den ganzen Ausdruck "aufleiten" kann, so als stünde da statt der Klammer einfach nur ein x.

2. Substitution
Kennt Ihr die überhaupt schon? Wäre hier eigentlich übertrieben, aber so kommt man direkt zu der "geklammerten" Stammfunktion (statt ausmultipliziert, wie - zunächst - bei 3.).
$F(x)=\integral{2(x-4)^2dx}$
$z=x-4$

$\bruch{dz}{dx}=1$

$dx=dz$
$F(x)= \integral{2z^2dz}= \bruch{2}{3}z^3+C= \bruch{2}{3}(x-4)^3+C$

3. Ausmultiplizieren etc.
Da ist dann ein Trick dabei, um wieder auf die geklammerte Form zu kommen. Eine Art quadratische Ergänzung (aber eben nicht quadratisch). Dazu muss man sich bewusst sein, dass es zu einer Funktion immer beliebig viele Stammfunktionen gibt, nämlich mit beliebigen Konstanten am Ende (das C im Beispiel 2), die ja beim Ableiten wegfallen.

$F(x)=\integral{2(x-4)^2dx}= 2\integral{(x^2-8x+16)dx}$
Hier könnte man sonst aufhören oder besser noch ausmulitplizieren, aber:
$= 2(\bruch{1}{3}x^3-4x^2+16x)+C= \bruch{2}{3}(x^3-12x^2+48x)+C= \bruch{2}{3}(x^3-3*4x^2+3*16x)+C$
$(a-b)^3=a^3-3a^2b+3ab^2-b^3$

$F(x)=\bruch{2}{3}(x^3-3*4x^2+3*16x-\green{4^3}+\red{4^3})+C=$
$ \bruch{2}{3}((x-4)^3}+\red{4^3})+C= $
$\bruch{2}{3}(x-4)^3}+\bruch{2}{3}*\red{4^3}+C=$
$ \bruch{2}{3}(x-4)^3}+C'$

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]