www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Mo 26.05.2008
Autor: OlliW

Aufgabe
Gesucht ist die Stammfunktion von [mm] f(x)=\bruch{1}{x^3} [/mm]


Hallo zusammen,

ich sitze gerade an Stammfunktionen von Integralen und ich verstehe das net wirklich.
Eine Stammfunktion ist doch eigentlich eine Aufleitung des eigentlichen Integrals oder nicht?

Beispiel:

[mm] \integral_{a}^{b}{x^2 + 1dx} [/mm] = [mm] \bruch{x^3}{3}+x+c [/mm]

Hier verstehe ich schonmal nicht, woher dann das +x kommt?

Schlimmer wird es aber bei der Funktion:

[mm] f(x)=\bruch{1}{x^3} [/mm]

Hier wird bei mir in den Unterlagen einfach das Ergebnis der Stammfunktion als:

[mm] -\bruch{1}{2x^2} [/mm]

hingeschrieben und ich habe keine Ahnung wie er dahin kommt. Kann mir da vielleicht jemand einen Anstoss geben?

Und gibt es vielleicht auch ein zu empfehlendes Buch, wo bereits zahlreiche Stammfunktionen und Ableitungen drin aufgelistet sind?

Vielen Dank vorab

Gruß vom verzweifetlen Olli


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Mo 26.05.2008
Autor: nad21

Hallo,

> Gesucht ist die Stammfunktion von [mm]f(x)=\bruch{1}{x^3}[/mm]
>  
>
> Hallo zusammen,
>
> ich sitze gerade an Stammfunktionen von Integralen und ich
> verstehe das net wirklich.
> Eine Stammfunktion ist doch eigentlich eine Aufleitung des
> eigentlichen Integrals oder nicht?

Grob gesagt, vielleicht eine Aufleitung des Integranden.

> Beispiel:
>
> [mm]\integral_{a}^{b}{x^2 + 1dx}[/mm] = [mm]\bruch{x^3}{3}+x+c[/mm]
>  
> Hier verstehe ich schonmal nicht, woher dann das +x kommt?

Das x ist der Teil der Stammfunktion, der zu der 1 gehört.

> Schlimmer wird es aber bei der Funktion:
>  
> [mm]f(x)=\bruch{1}{x^3}[/mm]
>  
> Hier wird bei mir in den Unterlagen einfach das Ergebnis
> der Stammfunktion als:
>  
> [mm]-\bruch{1}{2x^2}[/mm]
>  
> hingeschrieben und ich habe keine Ahnung wie er dahin
> kommt. Kann mir da vielleicht jemand einen Anstoss geben?

Du kannst [mm] \bruch{1}{x^3} [/mm] ja auch schreiben als [mm] x^{-3}. [/mm] Dann kannst
du mit den "normalen" Ableitungsregeln weiterrechnen, es ist dann
[mm] \integral x^{-3} [/mm] dx = [mm] \bruch{1}{-3+1} x^{-3+1} [/mm] + c = [mm] -\bruch{1}{2x^2} [/mm] + c

> Und gibt es vielleicht auch ein zu empfehlendes Buch, wo
> bereits zahlreiche Stammfunktionen und Ableitungen drin
> aufgelistet sind?

Da solltest du dir vielleicht mal eine Mathematk Duden oder
etwas in der Richtung anschauen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]