www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Stammfunktion
Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Wie lautet Stammfunktion?
Status: (Frage) beantwortet Status 
Datum: 21:45 Fr 27.06.2008
Autor: mathe.fr

Aufgabe
Bilde Stamfunktionen! von f(x) = [mm] x^2*ln(x) [/mm] und g(x) = [mm] -ln(x^2) [/mm]

Bitte um Hilfe!


        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Fr 27.06.2008
Autor: angela.h.b.


> Bilde Stamfunktionen! von f(x) = [mm]x^2*ln(x)[/mm] und g(x) =
> [mm]-ln(x^2)[/mm]
>  Bitte um Hilfe!
>  

Hallo,

Deine Ansätze und die Schilderung des Problems sind mehr als mager.

Versuch für f eine partielle Integration mit u'=x² und v=ln(x).  

Schreibe g als [mm] -1*ln(x^2) [/mm] und integriere partiell mit u'=1 und [mm] v=-ln(x^2). [/mm]

Gruß v. Angela

Bezug
        
Bezug
Stammfunktion: noch'n Tipp
Status: (Antwort) fertig Status 
Datum: 22:00 Fr 27.06.2008
Autor: Loddar

Hallo mathe.fr!


Bei der 2. Aufgabe kannst Du vor dem Integrieren noch eines der MBLogarithmusgesetze anwenden:
[mm] $$\ln\left(x^2\right) [/mm] \ = \ [mm] 2*\ln(x)$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Stammfunktion: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 22:49 Fr 27.06.2008
Autor: Leopold_Gast

Solange über den Definitionsbereich nichts ausgesagt ist, sollte man vom maximal möglichen ausgehen, also [mm]\mathbb{R} \setminus \{ 0 \}[/mm].

Daher:

[mm]\ln (x^2) = 2 \ln |x|[/mm]

Bezug
        
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Sa 28.06.2008
Autor: mathe.fr

hab jetzt bei der ersten aufgabe durch partiele integration:

ln(x) [mm] *(1/3x^3) [/mm] - [mm] \integral{[1/x * (1/3*x^3)]} [/mm]

wie kann ich den hintern teil noch zusammanfassen?
wenn ich noch eine weitere mache für den 2. therm komme ich trotzdem doch nicht weiter!?

Bezug
                
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 28.06.2008
Autor: AbraxasRishi

Hallo Mathe.fr!

Du könntest kürzen.....:-)

Dann sieht die ganze Sache so aus:

[mm] \integral{x^2*ln(x) dx}=\bruch{ln(x)*x^3}{3}-\integral{\bruch{x^2}{3} dx} [/mm]

Und nun den letzten Teil noch integrieren......:-)

Gruß

Angelika

Bezug
        
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Sa 28.06.2008
Autor: mathe.fr

nein das ist falsch gewesen was ich gerade geschrieben hatte. hm.. also nochmal: g(x)= [mm] -ln(x^2) [/mm] verstehe gerade nicht warum ich das umschreiben kann...

ach ja meine lösung zur ersten aufgabe: (ln(x) [mm] *x^3)/ [/mm] 3 - [mm] 1/9x^3[/mm]

Bezug
                
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Sa 28.06.2008
Autor: schachuzipus

Hallo mathe.fr,

> habe jetzt bei der zweiten raus: ln(x)*x -x? [notok]

Das stimmt leider nicht, mit den obigen Hinweisen musst du doch [mm] $\int{-2\cdot{}\ln(x) \ dx}=-2\cdot{}\int{1\cdot{}\ln(x) \ dx}$ [/mm] berechnen (mit partieller Integration)

Rechne also nochmal nach und vllt. auch vor, dann können wir deinen Fehler finden, ohne Glaskugel und Tarotkarten ist das sonst schwierig für uns ;-)

>  
> d.h: x(ln(x) -1)


LG

schachuzipus

Bezug
                        
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Sa 28.06.2008
Autor: mathe.fr

ok. also -2 [mm] \integral{ ln(x) *1} [/mm]

=> u= ln(x)   v'= 1
u'= 1/x     v=x

-->  -2 (ln(x) *x - [mm] \integral{1/x*x}) [/mm] = -2ln(x) *-2x - 2x


= -2x(-2ln(x) +1)


Bezug
                                
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Sa 28.06.2008
Autor: schachuzipus

Hallo nochmal,

> ok. also -2 [mm]\integral{ ln(x) *1} \ \red{dx}[/mm]
>  
> => u= ln(x)   v'= 1
>   u'= 1/x     v=x
>  
> -->  -2 (ln(x) *x - [mm]\integral{\red{(}1/x*x}) \ \red{dx}[/mm] [ok] = -2ln(x) *-2x - 2x [notok]

[mm] $=-2\cdot{}\left(\ln(x)\cdot{}x-x\right)=-2x\ln(x)+2x=2x(1-\ln(x))$ [/mm]

>  
>
> = -2x(-2ln(x) +1)
>  


LG

schachuzipus

Bezug
                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Sa 28.06.2008
Autor: mathe.fr

also es ist das selbe wie -1 * [mm] ln(x^2) [/mm]
dann ist u= -1, u'= ? nichts...

Bezug
        
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Sa 28.06.2008
Autor: mathe.fr

DANKE!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]