www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStammfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Stammfunktion
Stammfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 03.05.2005
Autor: johann1850

Bei der funktion f(x)=
[mm] \bruch{ln^a x}{x} [/mm] soll man stamm funktion berechnen.
Ich bekomme [mm] \bruch{ln^a x lnx}{1+a} [/mm]  
DERIVE sagt aber was anderes [mm] \bruch{ln^a x lnx-1}{1+a} [/mm]  

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Di 03.05.2005
Autor: Max

Hallo Johann,

ich komme auch auf dein Ergebnis, allerdings habe ich noch zu [mm] $\frac{(\ln(x))^{1+a}}{1+a}$ [/mm] zusammengefasst. Kontrolle durch Ableiten:

[mm] $F'(x)=\frac{1+a}{1+a}\cdot (\ln(x))^a \cdot \frac{1}{x}=\frac{(\ln(x))^a}{x}$ [/mm] [ok]

Max

Bezug
        
Bezug
Stammfunktion: Stimmt beides!
Status: (Antwort) fertig Status 
Datum: 21:02 Di 03.05.2005
Autor: Marcel

Hallo!

> Bei der funktion f(x)=
>   [mm]\bruch{ln^a x}{x}[/mm] soll man stamm funktion berechnen.
>  Ich bekomme [mm]\bruch{ln^a x lnx}{1+a}[/mm]  
> DERIVE sagt aber was anderes [mm]\bruch{ln^a x lnx-1}{1+a}[/mm]  

Das sind beides Stammfunktionen, denn [mm] $C_1=\frac{-1}{1+a}$ [/mm] ist ja eine Konstante (für festes $a [mm] \not=-1$) [/mm] (Stammfunktionen sind nur bis auf additive Konstanten eindeutig!).

Das heißt, wenn (ich habe es nicht nachgerechnet, aber ich vertraue euch beiden einfach mal Okay, ich habe es jetzt auch mal schnell nachgerechnet, es stimmt, und mit Max's Zusammenfassung sieht man das sofort ;-)) mit der Funktion [mm]F(x)=\bruch{\ln^a x \ln x}{1+a}[/mm] eine Stammfunktion zu [mm]f(x)=\bruch{\ln^a x}{x}[/mm] gegeben ist, dann ist auch mit [mm]F_C(x)=F(x)+C[/mm] für jede Konstante $C$ eine Stammfunktion zu $f$ gefunden. Insbesondere ergibt sich dann, dass auch mit:
[m]F_{C_1}(x)=F(x)+C_1=\bruch{\ln^a x \ln x}{1+a}+\left(\frac{-1}{1+a}\right)=\bruch{\ln^a x \ln x-1}{1+a}[/m] eine Stammfunktion zu $f$ gefunden ist!

Viele Grüße,
Marcel

Bezug
                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Di 03.05.2005
Autor: Max

Hallo Marcel,

stimmt wie peinlich - da hatte ich übersehen, dass die Differenz der beiden Stammfunktionen konstant ist.

[winken]
Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]