www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenStammfunktion berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Stammfunktion berechnen
Stammfunktion berechnen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion berechnen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:50 Mo 30.05.2005
Autor: petzimuh

Hallo!
Ich bräuchte bitte eure Hilfe!
Ich sitze jetzt schon die ganze Zeit an diesem Beispiel:

[mm] \integral_{}^{} [/mm] { [mm] e^{3x} [/mm] *  cos ( [mm] \bruch{x}{2}) [/mm] dx}

Ich wollte das Beispiel mit Substitution lösen!
und zwar habe ich so begonnen:

u=3*x

[mm] \bruch{du}{dx} [/mm] = 3

dx =  [mm] \bruch{1}{3}*du [/mm]

ich habe dann eingesetzt:

[mm] \bruch{1}{3} [/mm] * [mm] \integral_{}^{} e^{u} [/mm] * cos( [mm] \bruch{x}{2}) [/mm] du

= [mm] \bruch{1}{3} [/mm] * ( [mm] e^{u} [/mm] * cos( [mm] \bruch{x}{2}) [/mm] -  [mm] \integral_{}^{} [/mm] { [mm] e^{u} [/mm]  *(-sin* [mm] \bruch{x}{2}) [/mm] + cos* [mm] \bruch{1}{2} [/mm] dx}

Aber irgendwie komme ich ab hier nicht weiter!

Ich sage jetzt schon danke für die Hilfe!!!
Gruß
Petra


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Mo 30.05.2005
Autor: banachella

Hallo!

Versuch doch mal folgendes: Integriere zweimal partiell. Dann bekommst du einen Ausdruck von dieser Form:
[mm] $\int e^{3x}\cos\bruch{x}{2}dx=f(x)+c\int e^{3x}\cos\bruch{x}{2}dx$, [/mm] wobei $f$ eine Funktion ist und $c$ eine Konstante ungleich 1.
Dann gilt: [mm] $(1-c)\int e^{3x}\cos\bruch{x}{2}dx=f(x)$ [/mm] und [mm] $\int e^{3x}\cos\bruch{x}{2}dx=\bruch{f(x)}{1-c}$... [/mm]

Kommst du damit zum Ziel? Wenn du ein Ergebnis hast poste es, ich überprüfe es gerne!

Gruß, banachella

Bezug
                
Bezug
Stammfunktion berechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:35 Mo 30.05.2005
Autor: petzimuh

Danke für die schnelle Hilfe!!!

Ich hab mir das jetzt angeschaut....aber irgendwie komm ich hier jetzt noch weniger weiter!
Ich habe die Art, wie du mir das gerade vorgeschlagen hast glaube ich noch nie vorher gesehen, geschweige denn gemacht (oder ich erkenne es nur zur zeit einfach nicht)

Wird das "einfach" so umgeformt und dann normal weiter integriert?

Je länger ich mich mit dem Beispiel befasse, desto verwirrter werde ich! ;-(

Lg Petra

Bezug
                        
Bezug
Stammfunktion berechnen: Partielle Integration
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 30.05.2005
Autor: Roadrunner

Hallo Petra!


Zunächst solltest Du Dir vielleicht als Vorarbeit die Stammfunktionen der beiden "Teilfunktionen" [mm] $e^{3x}$ [/mm] und [mm] $\cos\left(\bruch{x}{2}\right)$ [/mm] bestimmen.

[mm] $\integral_{}^{} {e^{3x} \ dx} [/mm] \ = \ ...$

[mm] $\integral_{}^{} {\cos\left(\bruch{x}{2}\right) \ dx} [/mm] \ = \ ...$


Diese beiden Integrale sind jeweils (wie von Dir bereits richtig begonnen) mittels Substitution zu lösen.


Anschließend geht es dann an das eigentliche Integral [mm] $\integral_{}^{} {e^{3x} * \cos\left(\bruch{x}{2}\right) \ dx}$ [/mm] .


Und hier gehen wir mit partieller Integration vor. Dieses Verfahren kennst Du doch, oder?

Die Formel lautet:  [mm] $\integral_{}^{} [/mm] {f'*g \ dx} \ = \ f*g - [mm] \integral_{}^{} [/mm] {f*g' \ dx}$


Dabei mußt Du dieses Verfahren gleich zweimal hintereinander anwenden. Nach diesem 2. Schritt erhältst Du sowohl auf der rechten Seite als auch auf der linken Seite den Ausgangsausdruck [mm] $\integral_{}^{} {e^{3x} * \cos\left(\bruch{x}{2}\right) \ dx}$. [/mm]

Nur auf der rechten Seite ist dieser Ausdruck mit einem Faktor versehen (Banachella hat ihn $c$ genannt).

Von hier an kannst Du dann nach unserem gesuchten Ausdruck umstellen und hast auch bald die gesuchte Lösung.


Ist das nun etwas klarer geworden? Sonst einfach nochmal fragen.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Stammfunktion berechnen: Danke!
Status: (Frage) beantwortet Status 
Datum: 11:56 Do 02.06.2005
Autor: petzimuh

Hallo!
Danke für eure Hilfe! Konnte leider nicht früher antworten!
Ich denke ich habs jetzt doch geschafft!

Also:

[mm] \integral_{}^{} [/mm] { [mm] e^{3x} [/mm] * cos * [mm] \bruch{x}{2} [/mm] dx} =  
[mm] \bruch{ e^{3x}}{3} [/mm] * cos [mm] \bruch{x}{2} [/mm] - [mm] \integral_{}^{} {e^{3x} (-sin \bruch{x}{2}) dx} [/mm] = ....

dann wird nocheinmal partiell integriert und herauskommen sollte:

= [mm] \bruch{36}{37} [/mm] * [mm] \bruch{e^{3x}}{3} [/mm] * cos  [mm] \bruch{x}{2} [/mm] +  [mm] \bruch{1}{18} [/mm] * [mm] e^{3x} [/mm] * sin [mm] \bruch{x}{2} [/mm]

Ich habe es in der Uni verglichen und es sollte stimmen!

Danke für die Hilfe!!!
Lg Petra

Bezug
                                        
Bezug
Stammfunktion berechnen: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:54 Do 02.06.2005
Autor: Roadrunner

Hallo petzimuh!


Da muß sich irgendwo ein Zahlendreher eingeschlichen haben!

Ich erhalte als Stammfunktion (bitte nochmal nachrechnen):

[mm] $\integral_{}^{} {e^{3x}*\cos\left(\bruch{x}{2}\right) \ dx} [/mm] \ = \ [mm] \bruch{12}{37}*e^{3x}*\cos\left(\bruch{x}{2}\right) [/mm] + [mm] \red{\bruch{2}{37}}*e^{3x}*\sin\left(\bruch{x}{2}\right) [/mm] \ + \ C \ = \ [mm] \bruch{2}{37}*e^{3x}*\left[6*\cos\left(\bruch{x}{2}\right) + \sin\left(\bruch{x}{2}\right)\right] [/mm] \ + \ C$


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Stammfunktion berechnen: Jetzt passts! Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 03.06.2005
Autor: petzimuh

Bin ich froh!
Ich habe das gleiche wie du erhalten...doch auf der Uni rechnete jemand an der Tafel vor und da kam das ergebnis raus, welches ich gepostet hatte!

Na dann war ja doch meines richtig!
War mir aber nicht sicher!

Vielen Dank!!!!

Petra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]