www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisStammfunktion bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Stammfunktion bilden
Stammfunktion bilden < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mo 23.01.2006
Autor: tms

Aufgabe
Bilde die Stammfunktion:
a) [mm] 2x+3*\sin(2x) [/mm]
b) [mm] \bruch{8}{(3-2x)²} [/mm]

Kann mir jemad den Lösungweg erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stammfunktion bilden: Lösungsweg
Status: (Antwort) fertig Status 
Datum: 17:45 Mo 23.01.2006
Autor: Micchecker

Hallöchen!

Also fangen wir mal mit a) an:

Du kannst die Stammfunktion jeweils einzeln bilden, denn es ist ja eine Summe und kein Produkt.

Also sei g(x)=2x, dann ist [mm] G(x)=x^2, [/mm] das verstehst du ja sicher...
Sei nun h(x)=3*sin(2x), dann musst du dir einfach überlegen das man wenn man jetzt ableiten würde die zwei rausziehen würde und da du umgekehr vorgehst ziehst du jetzt 0,5 raus!
Die Ableitung von sin(x) ist cos(x) und von cos(x) -sin(x) und von -sin(x)
-cos(x) usw...
Also ist H(x)=1,5*(-cos(2x)). Dies Produktregel kommt hier nicht zum tragen, weil die 3 alleine ohne x steht.

Ich hoffe die zweite kannst du jetzt alleine, ist nicht so schwer, schau dir mal die Regeln an, die ihr bis jetzt hattet!

Gruß

Bezug
                
Bezug
Stammfunktion bilden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 23.01.2006
Autor: tms

Also zur b):

ich würde erstmal das untere hochziehen:
[mm] 8*(3-2x)^{-2} [/mm]

8 könnte ich ja dann lassen, ist ja ne Zahl und hinten müsste die Hochzahl -1 sein:
[mm] -8*(3-2x)^{-1} [/mm]
Da ich aber die innere Ableitung beim Ableiten machen müsste, teil ich -8 noch durch -2
[mm] 4*(3-2x)^{-1} [/mm]

Wenn ich das Ableite komm ich auf:
[mm] -4*(3-2x)^{-2}*-2 [/mm]

Passt das so dann?

Bezug
                        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mo 23.01.2006
Autor: Arkus

Ich glaube du hast da was verwechselt :-)

du möchtest die Stammfunktion haben, aber wie ich das sehe benutzt du die Kettenregel , die benutzt man aber beim Ableiten, nicht beim Aufleiten!

Man sollte dieses Integral aber mit linearer Substitution integrieren können:

[mm] [red]$\int (ax+b)^n \, [/mm] dx = [mm] \frac{(ax+b)^{n+1}}{a(n+1)} [/mm] + C$[/red]

$8 [mm] \cdot \int (-2x+3)^{-2} \, [/mm] dx = 8 [mm] \cdot \left [ \frac{(-2x+3)^{-1}}{2} \right [/mm] ] + C$

$8 [mm] \cdot \int (-2x+3)^{-2} \, [/mm] dx = [mm] \frac{8}{-4x+6} [/mm] +C$

zu a)

Da hast Micchecker zwar Recht, aber die konkrete Stammfunktion lautet dann richtig:

[mm] $\int [/mm] 2x+3 * sin(2x) [mm] \, [/mm] dx = [mm] x^2-\frac{3}{2}cos(2x) [/mm] + C$

Ich wollts nur nochmal erwähnen, nicht das du das [mm] $x^2$ [/mm] vergisst ;-)

MfG Arkus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]