www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStammfunktion von Brüchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Stammfunktion von Brüchen
Stammfunktion von Brüchen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mo 27.09.2004
Autor: Alice

Hallo liebe Leute,

ich möchte die Stammfunktion von folgendem Bruch bilden:

[mm]x'(p)=- \bruch{10}{p}[/mm]

als 'Hinweis' [keineahnung] wurde mir gegeben:

mit x(100)=0 und 0<p [mm] \le100 [/mm]

Wahrscheinlich würde mir ein kleiner Fingerzeig schon enorm weiterhelfen, also falls das jemand kann (gibt es da ne regel??) dann würd ich mich sehr, sehr freuen !!

Vielen Dank schonmal, :-))

        
Bezug
Stammfunktion von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 27.09.2004
Autor: Paulus

Hallo Alice

>  
> $x'(p)=- [mm] \bruch{10}{p}$ [/mm]

Hier sind eigentlich lediglich die Variablennamen etwas ungewohnt.

Wenn da steht: $x'(p)=...$, dann bedeutet das: die Funktion $x(p)$ ist nach $p$ abzuleiten.

> als 'Hinweis' [keineahnung] wurde mir gegeben:

> $x(100)=0$ und $0 < p [mm] \le [/mm] 100$

Ich weiss nicht, ob dir das was hilft: um ein etwas gewohnteres Bild zu erhalten, würde ich vorerst einmal alles ein wenig umtaufen! Nachdem du die Aufgabe gelöst hast, solltest du es aber nochmals ohne Umtaufe durchrechnen! Das macht flexibel gegenüber unabhängiger Bezeichnungen.

Mit Umtaufen meine ich konkret das: setzte für $x$ ein $y$ ein, und nachher für das $p$ ein $x$.

Dann sieht die Aufgabe schon etwas gewohnter aus:

[mm] $y'(x)=-\bruch{10}{x}$ [/mm]

Und der Hinweis wird zu:

mit $y(100)=0$ und $0 < x [mm] \le100$ [/mm]

Den Hinweis $y(100)=0$ sehe ich dann so: weil ja eine Stammfunktion nur bis auf eine Konstante bestimmt ist, kann mittels $y(100)$ die Konstante bestimmt werden.

Den Hinweis $0 < x [mm] \le [/mm] 100$ kannst du vielleicht dann noch selber etwas interpretieren?

Kommst du mit diesen Anmerkungen jetzt ein wenig weiter? :-)

Mit lieben Grüssen

Paul


Bezug
                
Bezug
Stammfunktion von Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Di 28.09.2004
Autor: Alice

Hallo Paulus,

danke schonmal für deine Antwort, aber leider bringt mich das nicht wirklich weiter. Die Bezeichnungen sind nicht das, was mir Probleme macht, sondern der Bruch an sich: Die Stammfunktion wird ja auch ein Bruch gewesen sein, und da der ja mittels Quotientenregel abgeleitet wird, fällt mir das Aufleiten schwer...

Die Frage ist ja: Was ist abgeleitet [mm] -\bruch{10}{p} [/mm]

Hmm, da kommt mir doch eine Idee :-))

-10 ln(p) ???? Das ergibt abgeleitet ja [mm] -\bruch{10}{p} [/mm]
Hmm, aber was bringt mir dann der Hinweis x(100)=0???

Ich würde mich sehr freuen, wenn Du (oder auch gerne jemand anders) mir da auf die sprünge helfen könntest!

Bezug
                        
Bezug
Stammfunktion von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Di 28.09.2004
Autor: Micha

Hallo Alice!

> Die Frage ist ja: Was ist abgeleitet [mm]-\bruch{10}{p} [/mm]
>  
> Hmm, da kommt mir doch eine Idee :-))
>  
> -10 ln(p) ???? Das ergibt abgeleitet ja [mm]-\bruch{10}{p} [/mm]
>  Hmm, aber was bringt mir dann der Hinweis x(100)=0???
>  
> Ich würde mich sehr freuen, wenn Du (oder auch gerne jemand
> anders) mir da auf die sprünge helfen könntest!

Ich versuche es einfach mal: Du bist dem Ziel ja schon ziemlich nahe gekommen:
[mm] \integral {-\frac{10}{p} dp}=-10 \ln |p| +c[/mm].

Jetzt musst du noch die Konstante c mit deinem "Hinweis" bestimmen:

[mm] 0 = -10 \ln |100| +c[/mm]
[mm]\gdw 10 \ln 100 = c [/mm]

Damit hast du dann deine Funktion [mm] x(p) = -10 \ln p + 10 \ln 100[/mm].

(Die Betragsstriche darf ich weglassen, weil ich ja im Definitionsbereich [mm]0\le p\le 100[/mm] arbeite.)

Hoffe das dir nun alles klar geworden ist. Ansonsten frage bitte nocheinmal nach.

Gruß Micha

Bezug
                                
Bezug
Stammfunktion von Brüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:41 Di 28.09.2004
Autor: Alice

aaach jaaa,

dann ist ja alles klar, danke für deine Antwort !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]