www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStammfunktion von tan
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Stammfunktion von tan
Stammfunktion von tan < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von tan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Mi 23.11.2005
Autor: derchiller

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hi! Ich wüsste gerne, wie man folgende Stammfunktion berechnet:

  [mm] \integral_{0}^{x} [/mm] {tan(t) dt} = -ln(cos(x)).

Ich habe den Integranden durch die Substitution z:=tan(t/2) in eine rationale Funktion in z überführt und dann mit Partialbruchzerlegung behandelt, habe mich aber wohl irgendwo verrechnet, deshalb wollte ich erstmal wissen, ob das überhaupt der "kanonische Weg" ist. Kommt mir irgendwie etwas aufwändig vor. Mit partieller Integration etc. komme ich aber nicht weiter und wenn ich tan durch exp ausdrücke bekomme ich auch wieder eine unschöne rationale Fkt. Kann mir jemand helfen?

        
Bezug
Stammfunktion von tan: allgemeiner
Status: (Antwort) fertig Status 
Datum: 01:28 Do 24.11.2005
Autor: leduart

Hallo
Es gilt ganz allgemein :
[mm] \integral_{a}^{b} {\bruch{f'(x)}{f(x)} dx}=ln{f(x)}, [/mm] durch differenzieren zu sehen. Natürlich geht das auch mit Substitution :f(x)=u, aber warum eigentlich?
entsprechend etwa :
[mm] \integral_{a}^{b} {f'(x)/\wurzel{f(x)} dx}=2*\wurzel{f(x)} [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]