www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktionbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Stammfunktionbestimmung
Stammfunktionbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 01.03.2006
Autor: Stefo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin bei einer Aufgabe auf eine Funktion gestoßen, die ich nicht integrieren kann, vielleicht könnt ihr mir dabei helfen.

Die Funktion lautet:

1/(1-xquadrat)quadrat

Ich hoffe ihr versteht die Funktion so, ich kanns nicht anders darstellen.

Ich hab es mit Substitution versucht, aber ich weiß nicht, was ich substituieren soll. Hoffe ihr könnt mir helfen.

Danke!

Stefo

        
Bezug
Stammfunktionbestimmung: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 16:03 Mi 01.03.2006
Autor: Roadrunner

Hallo Stefan,

[willkommenmr] !!


Meinst Du hier diese Funktion? $f(x) \ = \ [mm] \bruch{1}{\left(1-x^2\right)^2}$ [/mm]

Dabei haben wir hier so einen tollen Formeleditor ;-) ...


Mit Substitution kommst Du hier nicht weit, Du musst diesen Bruch gemäß Partialbruchzerlegung auseinander ziehen und dann integrieren:

$f(x) \ = \ [mm] \bruch{1}{\left(1-x^2\right)^2} [/mm] \ = \ [mm] \bruch{1}{[(1-x)*(1+x)]^2} [/mm] \ = \ [mm] \bruch{1}{(1-x)^2*(1+x)^2} [/mm] \ = \ [mm] \bruch{A}{1-x}+\bruch{B}{(1-x)^2}+\bruch{C}{1+x}+\bruch{D}{(1+x)^2}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Stammfunktionbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 01.03.2006
Autor: Stefo

Danke erstmal!
Aber: Was meinst du mit A,B,C und D? Und wie bist du vom vorletzten auf den letzten Schritt gekommen?


Bezug
                        
Bezug
Stammfunktionbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 01.03.2006
Autor: Herby

Hallo Stefan,

> Danke erstmal!
>  Aber: Was meinst du mit A,B,C und D?

A,B,..  sind noch Koeffizienten, die du bestimmen musst, aber so weit sind wir noch nicht.

> Und wie bist du vom vorletzten auf den letzten Schritt gekommen?

Das ist das allgemein Vorgehen einer []Partialbruchzerlegung

Wenn du auf den Link klickst, landest du bei Wiki und kannst dir das in Ruhe mal anschauen.

da du zwei Mal dieselbe Nullstelle hast, wird diese mit dem Quadrat eingeführt.

z.B.

[mm] x_{1}=x_{2}=5 \Rightarrow [/mm] (x-5) und (x-5)²


zum weiteren Vorgehen:

du musst jetzt mit dem Hauptnenner multiplizieren, dann für x passende Werte einsetzen, so dass immer ein Faktor identisch "Null" wird.

Somit gelangst du zu einem Gleichungssystem mit 4 Unbekannten und vier Gleichungen, was sich lösen läßt.

Bei Problemen, frag' jederzeit nach :-)


Liebe Grüße
Herby





Bezug
                
Bezug
Stammfunktionbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Mi 01.03.2006
Autor: Stefo

Okay, danke erstmal! Ich hab das zwar jetzt noch nicht durchblickt aber ich schau mir das jetzt mal an.

Tschau Stefo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]