www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfuntion einer ln-Fkt.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Stammfuntion einer ln-Fkt.
Stammfuntion einer ln-Fkt. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfuntion einer ln-Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mi 14.03.2007
Autor: Alessia_1988

Aufgabe
Y=f(x)=(2-x)*ln(2-X)

Hallo!
Ich brauch mal eure Hilfe!
Diese Funktion ist mir als hAUSAUFGABE GEGEBEN WURDEN UND ICH SOLLTE EINE kURVENDISKUSSION DURCHFÜHREN :dIES HAB ICH AUCH GESCHAFFT ,außer der Teil mit dem Flächeninhalt!Ich weiß nicht wie ich diese Funktion integrieren soll, also STammfunktion bilden soll!
Ich hoffe mir kann jemand helfen. Ich habe es ja schon versucht und bin zu diesem Ergebnis gekommen: F(x) [mm] (2x-(1/2)x^2)*ln(2-x)-(1/4)x^2 [/mm]
Dies ist jedoch falsch!
Ich hoffe mir kann jemand auf die Sprünge helfen und es erklären!
VG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfuntion einer ln-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 14.03.2007
Autor: barsch

Hi,

wow, okay, dann lass es uns mal versuchen:

Vorschlag: Partielle Integration.


[mm] \integral{(2-x)*ln(2-x) dx} [/mm] = [mm] -\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}*(-1)dx} [/mm]

Ich bin kein Freund vieler Vorzeichen!

[mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}dx} [/mm]

[mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{\bruch{1}{2}*(2-x)dx} [/mm]

[mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)+\bruch{1}{4}*(2-x)^{2} [/mm]

Ich prüfe aber immer noch mal. Weil Vorzeichenfehler sind schnell gemacht.

Also: f(x)= [mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)+\bruch{1}{4}*(2-x)^{2} [/mm]

[mm] f'(x)=-\bruch{1}{2}*(2-x)*2*(-1)*ln(2-x)-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{(2-x)}*(-1)+\bruch{1}{4}*(2-x)*2*(-1) [/mm]

[mm] f'(x)=(2-x)*ln(2-x)+\bruch{1}{2}*(2-x)-\bruch{1}{2}*(2-x) [/mm]

ergo: f'(x)=(2-x)*ln(2-x)

Vorzeichen müssten also stimmen, aber du wirfst ja sicher noch mal einen Blick drüber.

MfG


Bezug
                
Bezug
Stammfuntion einer ln-Fkt.: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 17:29 Mi 14.03.2007
Autor: Mary15


> Hi,
>  
> wow, okay, dann lass es uns mal versuchen:
>  
> Vorschlag: Partielle Integration.
>  
>
> [mm]\integral{(2-x)*ln(2-x) dx}[/mm] =
> [mm]-\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}*(-1)dx}[/mm]
>  

Hallo,
bei partielle Integration für u = ln(2-x) und dv = 2-x
wird du = [mm] -\bruch{1}{2-x} [/mm] und [mm] v=2x-\bruch{x^2}{2} [/mm]

Also [mm] \integral{(2-x)*ln(2-x) dx} [/mm] = [mm] (2x-\bruch{x^2}{2})*ln(2-x)+ \integral{(2x-\bruch{x^2}{2})*\bruch{1}{2-x}dx} [/mm]

wie kommst Du auf [mm] -\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}*(-1)dx} [/mm] ?




Bezug
                        
Bezug
Stammfuntion einer ln-Fkt.: Korrektur?
Status: (Korrektur) oberflächlich richtig Status 
Datum: 18:59 Mi 14.03.2007
Autor: barsch

Hi Mary 15,

danke, dass du meine Antwort zu Alessia_1988 so genau geprüft hast, aber ich kann deine Meinung leider nicht teilen. Weil die Stammfunktion, die ich rausbekommen habe, hat die Ableitung, die gefordert ist.

Ich nehme Änderungsvorschläge gerne an. Muss mich bei Alessia_1988 entschuldigen, weil sie jetzt sicher völlig im Dunkeln tappt?! Ich hoffe, ich habe dich nicht weiter irritiert!

Ich versuch dir meine Vorgehensweise mal grob zu skizzieren:

[mm] \integral{u'v dx}=uv-\integral{uv' dx} [/mm]

Mein u'(x)=(2-x), u(x)=- [mm] \bruch{1}{2}(2-x)^{2} [/mm]


und mein v(x)=ln(2-x), v'(x)=- [mm] \bruch{1}{2-x} [/mm]

und so ergibt sich dann meine Rechnung. Vielleicht äußerst du dich,Mary 15, oder ein dritter Mal dazu, im Interesse von Alessia_1988.

Sorry, Alessia_1988. Hast du die Schritte evtl. nachvollzogen und kannst dich dazu äußern?

MfG





Bezug
                        
Bezug
Stammfuntion einer ln-Fkt.: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 19:23 Mi 14.03.2007
Autor: barsch

Hi,

meine Mitteilung (Korrektur?) hat sich erledigt. Du machst quasi dasselbe wie ich, nur du leitest ganz falsch auf.

Du musst (2-x) als ganzes sehen. Und dann leitest du wie folgt auf:

f(x)=(2-x)

F(x)= - [mm] \bruch{1}{2}*(2-x)^{2} [/mm]

Ich habe keine Ahnung, ob du die Markierung, dass mein Artikel Fehler beinhaltet, wieder wegbekommst.

Naja, ich habe ja erst selbst an meiner Lösung gezweifelt. ;)

MfG

Bezug
                                
Bezug
Stammfuntion einer ln-Fkt.: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 21:28 Mi 14.03.2007
Autor: Mary15

Sorry ich war voreilig. Nach dem Du angegeben hast wie Du dv gefunden hast ist mir klar geworden, dass deine Lösung auch richtig ist.

>
> meine Mitteilung (Korrektur?) hat sich erledigt. Du machst
> quasi dasselbe wie ich, nur du leitest ganz falsch auf.

Meine Lösung ist nicht falsch.

>  
> Du musst (2-x) als ganzes sehen. Und dann leitest du wie
> folgt auf:

Man muss nicht die dv-Funktion als ganzes betrachten. v-Funktion kann als Integral von dv berechnet werden und dabei alle Integralregel (auch Summenregel) sind erlaubt.
[mm] \integral{dv} [/mm] = v+C.
Man nimmt v als Stammfunktion bei C=0
In deiner Funktion F(x) F(x)= - [mm]\bruch{1}{2}*(2-x)^{2}[/mm]
  steckt eine Konstante [mm] C\not=0 [/mm] drin, die wird aber später bei der Vereinfachung des Ergebnisses eliminiert. So kommt man zum gleichen Ergebnis.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]