www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteStandardskalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - Standardskalarprodukt
Standardskalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardskalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Mi 30.05.2012
Autor: eddiebingel

Aufgabe
Sei V := [mm] \IR^{n}. [/mm] Sei <., .>_{s} : V x V [mm] \to \IR [/mm] das Standard-Skalarprodukt. Betrachte die Abbildung L : V [mm] \to [/mm] V*, v [mm] \mapsto L_{v}, [/mm]
wobei [mm] L_{v} [/mm] = <u, v>_{s} ist. Zeige L ist ein wohldefinierter Isomorphismus.

Hallo zusammen hier muss ich einen wohldefinierten Isomorphismus zeigen
also: Linearität,Bijetivität und [mm] L_{v} \in [/mm] V*

Gezeigt habe ich schon die Linearität und die Injektivität bei der Surjektivität habe ich allerdings schon Probleme da ich mt der Definition nicht weiterkomme
Ich muss ja zeigen dass [mm] \forall [/mm] y [mm] \in [/mm] V*: [mm] \exists [/mm] x [mm] \in [/mm] V : [mm] L_{v}(x) [/mm] = y
Hoffe habt ihr Ideen für mich

lg eddie

        
Bezug
Standardskalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mi 30.05.2012
Autor: fred97


> Sei V := [mm]\IR^{n}.[/mm] Sei <., .>_{s} : V x V [mm]\to \IR[/mm] das
> Standard-Skalarprodukt. Betrachte die Abbildung L : V [mm]\to[/mm]
> V*, v [mm]\mapsto L_{v},[/mm]
> wobei [mm]L_{v}[/mm] = <u, v>_{s} ist. Zeige L ist ein
> wohldefinierter Isomorphismus.
>  Hallo zusammen hier muss ich einen wohldefinierten
> Isomorphismus zeigen
>  also: Linearität,Bijetivität und [mm]L_{v} \in[/mm] V*
>  
> Gezeigt habe ich schon die Linearität und die
> Injektivität bei der Surjektivität habe ich allerdings
> schon Probleme da ich mt der Definition nicht weiterkomme
>  Ich muss ja zeigen dass [mm]\forall[/mm] y [mm]\in[/mm] V*: [mm]\exists[/mm] x [mm]\in[/mm] V
> : [mm]L_{v}(x)[/mm] = y
>  Hoffe habt ihr Ideen für mich

Du hast nicht verstanden, worum es geht. Das liegt vielleicht daran, dass der Aufgabensteller zuviele L eingebaut hat.

Ich formuliere es mal um.

Sei T : V $ [mm] \to [/mm] $ V* wie folgt definiert:

    ist v [mm] \in [/mm] V, so ist T(v) [mm] :=L_v, [/mm]

also

             $T(v)(x)=<x,v>_s $  für x [mm] \in \IR^n. [/mm]

Für die Surjektivität von T mußt Du zeigen:

Ist f [mm] \in V^{\star}, [/mm] so gibt es ein v [mm] \in [/mm] V mit: $f(x)=<x,v>_s$  für alle x [mm] \in \IR^n. [/mm]

FRED


>  
> lg eddie


Bezug
        
Bezug
Standardskalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Mi 30.05.2012
Autor: fred97

Eine Bemerkung zu obiger Aufgabe, besser gesagt zur Formulierung der Aufgabenstellung:

würde ich Lineare Algebra lesen (was ich schon getan habe) und würde der (die) mir zugeordnete Übungsleiter(in) mit obigem Aufgabenvorschlag, mit obiger Formulierung, kommen, so würde ich ihm (ihr) das Papier um die Ohren hauen und ihn (sie) fragen, ob er (sie) eigentlich noch ganz klar im Kopf ist.

Warum ? Darum: obige Formulierung lässt, für Anfänger,  kaum erkennen, worum es eigentlich geht. Die verschwurbelte Ausdrucksweise und die völlig überfrachtete Bezeichnungsweise stiften zusätzlich noch mehr Verwirrung. Ein Erkenntnisgewinn ist fast auszuschließen (wie gesagt für Anfänger (aber diesen wollen wir doch die Mathematik schmackhaft machen )).

Worum geht es ? Darum: der [mm] \IR^n [/mm] ist "selbstdual".  Damit ist gemeint:

(1) Ist v [mm] \in \IR^n, [/mm] so wird durch [mm] f_v(x):= [/mm] eine Linearform auf [mm] \IR^n [/mm] (also ein Element des Dualraumes von [mm] \IR^n) [/mm] definiert.

(2) Ist umgekehrt f ein Element des Duals von [mm] \IR^n, [/mm] so gibt es genau ein v [mm] \in \IR^n [/mm] mit:

                   f(x)=<x,v> für alle x [mm] \in \IR^n. [/mm]


Meinungen zu meiner Kritik sind willkommen.

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]