www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauStatik - Kräftegleichgewicht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maschinenbau" - Statik - Kräftegleichgewicht
Statik - Kräftegleichgewicht < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statik - Kräftegleichgewicht: Aufgabe 1 - Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 26.08.2008
Autor: RuffY

Aufgabe
Beim Schließen einer Tür (1) gleitet der Schlossriegel () in seiner Führung an den Punkten A und B und außerdem am Anschlag des Türrahmens (3) im Punkt C. Der Schlossriegel wird dabei durch seine Feder gegen den Türrahmen gedrückt, er Reibwert sei an den drei Reibstellen gleich groß.
Wie groß ist das Verhältnis Fc/F in der skizzierten Riegelstellung beim langsamen Schließen der Tür, wenn Fc die vom Türrahmen auf den Schlossriegel übertragende Kraft und F die Federkraft ist?
geg.: a,b,c, mü, alpha

[Dateianhang nicht öffentlich]

Hallo vorhilfe-user,

oben stehende Aufgabe habe ich als Übung bekommen, ich habe einen Lösungsansatz gemacht, der so glaube ich richtig sein müsste. Leider habe ich keine 100% Lösung für die Aufgabe, sodass ich nicht weiß ob der extrem komplizierte Term richtig ist:

[mm] \summe F_{x}=0=-F* F_{b}\mu-F_{a}\mu+\cos\alpha*F_{c}-\sin\alpha*F_{c}\mu [/mm]

[mm] \summe F_{y}=0= F_{b}- F_{a}+\sin\alpha*F_{c}+\cos\alpha*F_{c}\mu [/mm]

[mm] \summe M_{c}=0= F_{b}c-F_{a}b-F_{b}\mu*\bruch{a}{2}+F_{a}\mu*\bruch{a}{2} [/mm]

Soweit die Kraftgleichgewichte. Nach Auflösen der 3. Gleichung nach [mm] F_{b} [/mm] und die 2. Gleichung nach [mm] F_{a} [/mm] ergeben sich folgende Gleichungen zum Einsetzen in die 1. Gleichung:

[mm] F_{b}=\ F_{a}*\bruch{(b-\mu*\bruch{a}{2)}}{(c-\mu*\bruch{a}{2})} [/mm]

[mm] F_{a}=\-F_{c}*\bruch{(\sin\alpha*(c-\mu*\bruch{a}{2})-\mu*\cos\alpha*(c-\mu*\bruch{a}{2})}{b-c} [/mm]

Soweit diese Ausdrücke, die ich einsetzen wollte, aber es wird so kompliziert, dass ich nicht weiß ob ich überhaupt die Aufgabe bis hierhin richtig angegangen bin?
Könnt ihr mir helfen??

Vielen Dank schonmal

RuffY




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Statik - Kräftegleichgewicht: erste Ideen
Status: (Antwort) fertig Status 
Datum: 10:19 Mi 27.08.2008
Autor: Loddar

Hallo RuffY!


Das sieht doch grundsätzlich sehr gut aus ...


> [mm]\summe F_{x}=0=-F* F_{b}\mu-F_{a}\mu+\cos\alpha*F_{c}-\sin\alpha*F_{c}\mu[/mm]

Hier gehört nach dem $-F_$ ein Minuszeichen hin (kein Malpunkt).

  

> [mm]\summe F_{y}=0= F_{b}- F_{a}+\sin\alpha*F_{c}+\cos\alpha*F_{c}\mu[/mm]

Zeichne doch mal die entsprechenden Kräfte in die Skizze ein. Hier bin ich gerade etwas unschlüssig, was das Vorzeichen des letzten Termes angeht.

  

> [mm]\summe M_{c}=0= F_{b}c-F_{a}b-F_{b}\mu*\bruch{a}{2}+F_{a}\mu*\bruch{a}{2}[/mm]
>  
> Soweit die Kraftgleichgewichte. Nach Auflösen der 3.
> Gleichung nach [mm]F_{b}[/mm] und die 2. Gleichung nach [mm]F_{a}[/mm]
> ergeben sich folgende Gleichungen zum Einsetzen in die 1.
> Gleichung:
>  
> [mm]F_{b}=\ F_{a}*\bruch{(b-\mu*\bruch{a}{2)}}{(c-\mu*\bruch{a}{2})}[/mm]
>  
> [mm]F_{a}=\-F_{c}*\bruch{(\sin\alpha*(c-\mu*\bruch{a}{2})-\mu*\cos\alpha*(c-\mu*\bruch{a}{2})}{b-c}[/mm]

Setze doch [mm] $F_a$ [/mm] in die darüberliegende Gleichungen ein, dann kannst Du schon den Term [mm] $\left(c-\mu*\bruch{a}{2}\right)$ [/mm] kürzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]