www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStationäre Punkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Stationäre Punkte
Stationäre Punkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Fr 02.01.2009
Autor: drunkenmunky

Aufgabe
Bestimmen Sie alle stationären Punkte der Funktion f mit [mm] z=f(x,y)=2x^4+y^4-2x^2-2y^2 [/mm]

[mm] fx=8x^3-4x [/mm]
[mm] fy=4y^3-4y [/mm]
[mm] fxx=24x^2-4 [/mm]
[mm] fyy=12y^2-4 [/mm]
fxy=0

fx=fy=0
fx=0 für [mm] x_{1}=0; x_{2}=\wurzel{\bruch{1}{2}}; x_{3}=-\wurzel{\bruch{1}{2}} [/mm]

fy=0 für [mm] x_{1}=0; x_{2}=1; x_{3}=-1 [/mm]

Habe ich somit 5 mögliche stationäre Punkte?
(0|0); [mm] (\wurzel{\bruch{1}{2}}|0); (-\wurzel{\bruch{1}{2}}|0);(0|1);(0|-1) [/mm]

        
Bezug
Stationäre Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 02.01.2009
Autor: schachuzipus

Hallo drunkenmunky,

> Bestimmen Sie alle stationären Punkte der Funktion f mit
> [mm]z=f(x,y)=2x^4+y^4-2x^2-2y^2[/mm]
>  [mm]fx=8x^3-4x[/mm] [ok]
>  [mm]fy=4y^3-4y[/mm] [ok]
>  [mm]fxx=24x^2-4[/mm] [ok]
>  [mm]fyy=12y^2-4[/mm] [ok]
>  fxy=0 [ok]
>  
> fx=fy=0
>  fx=0 für [mm]x_{1}=0; x_{2}=\wurzel{\bruch{1}{2}}; x_{3}=-\wurzel{\bruch{1}{2}}[/mm] [ok]


> fy=0 für [mm] $\red{y}_{1}=0; \red{y}_{2}=1; \red{y}_{3}=-1$ [/mm] [ok]
>  
> Habe ich somit 5 mögliche stationäre Punkte?
>  (0|0); [mm](\wurzel{\bruch{1}{2}}|0); (-\wurzel{\bruch{1}{2}}|0);(0|1);(0|-1)[/mm]

Ich komme auf 9 stat. Punkte, du musst jeden x-Wert mit jedem y-Wert kombinieren, denn genau für diese Kombinationen ist [mm] $f_x=f_y=0$ [/mm]


LG

schachuzipus  


Bezug
                
Bezug
Stationäre Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Fr 02.01.2009
Autor: drunkenmunky

ja klingt einleuchtend :-)

also habe ich bei (0|0) ein lokales Maximum

bei [mm] (\wurzel{\bruch{1}{2}}|1); (\wurzel{\bruch{1}{2}}|-1); (-\wurzel{\bruch{1}{2}}|1); (-\wurzel{\bruch{1}{2}}|-1); [/mm]  jeweils ein lokales Minimum

und der Rest sind alles Sattelpunkte.

Richtig?


Bezug
                        
Bezug
Stationäre Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 Fr 02.01.2009
Autor: schachuzipus

Hallo nochmal,

> ja klingt einleuchtend :-)
>  
> also habe ich bei (0|0) ein lokales Maximum
>  
> bei [mm](\wurzel{\bruch{1}{2}}|1); (\wurzel{\bruch{1}{2}}|-1); (-\wurzel{\bruch{1}{2}}|1); (-\wurzel{\bruch{1}{2}}|-1);[/mm]
>  jeweils ein lokales Minimum
>  
> und der Rest sind alles Sattelpunkte.
>  
> Richtig?

Schreibe mal die Hessematrizen zu den stat. Punkten auf und wie du dann argumentiert hast für Max./Min./Sattelpunkt.

Du willst uns doch nicht zumuten ;-), alles selber zu rechnen?

Also zeigt her Eure Füße, zeigt her Eure Schuh' ...

;-)

LG

schachuzipus

>  


Bezug
                                
Bezug
Stationäre Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Fr 02.01.2009
Autor: drunkenmunky

;-) also Hesse Matrix [mm] H_{f}(x,y)=\pmat{ 24x^2-4 & 0 \\ 0 & 12y^2-4 } [/mm]

wenn ich dann einsetzte z.B. für (0|0) kann ich ja direkt die Eigenwerte  [mm] \lambda_{1}=-4 [/mm] ; [mm] \lambda_{2}=-4 [/mm] ablesen. Beide neg. -> Max

Bei den restlichen das gleiche...

Beide pos -> Min
unterschiedlich -> Sattelp.

Bezug
                        
Bezug
Stationäre Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 02.01.2009
Autor: schachuzipus

Hallo nochmal,

> ja klingt einleuchtend :-)
>  
> also habe ich bei (0|0) ein lokales Maximum
>  
> bei [mm](\wurzel{\bruch{1}{2}}|1); (\wurzel{\bruch{1}{2}}|-1); (-\wurzel{\bruch{1}{2}}|1); (-\wurzel{\bruch{1}{2}}|-1);[/mm]
>  jeweils ein lokales Minimum
>  
> und der Rest sind alles Sattelpunkte.

Jo, das sieht gut aus !

>  
> Richtig?

Jau

LG

schachuzipus  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]