www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStationäre Punkte finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Stationäre Punkte finden
Stationäre Punkte finden < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 31.01.2016
Autor: Mathics

Aufgabe
Betrachten Sie folgendes Maximierungsproblem:

[mm] \max_{x,y,z} [/mm] f = max [mm] x^{2} [/mm] + yx + z

u.d.N. x + y = 1
[mm] y^{2} [/mm] + [mm] z^{2} [/mm] = 2

Berechnen Sie die stationären Punkte der Lagrangefunktion.

Hallo,

Die Lagrangefunktion lautet:

L = [mm] x^{2} [/mm] + yx+ z - [mm] \lambda(x [/mm] + y - 1) - [mm] \mu(y^{2} [/mm] + [mm] z^{2} [/mm] - 2)

Die ersten Ableitungen:

[mm] L_{x} [/mm] = 2x + y - [mm] \lambda [/mm] = 0
[mm] L_{y} [/mm] = x - [mm] \lambda [/mm] - [mm] 2*\mu*y [/mm] = 0
[mm] L_{z} [/mm] = 1 - [mm] 2*\mu*z [/mm] = 0
[mm] L_{\lambda} [/mm] = -x - y + 1 = 0
[mm] L_{\mu} [/mm] = [mm] -y^2 [/mm] - [mm] z^2 [/mm] + 2 = 0


Gibt es hier eine simple Strategie, nach der man die stationären Punkte finden kann? Bei einer Nebenbedingung habe ich bisher immer [mm] L_{x} [/mm] und [mm] L_{y} [/mm] nach
[mm] \lambda [/mm] aufgelöst, gleichgesetzt und dann mithilfe von [mm] L_{\lambda} [/mm] x oder y herausbekommen. Aber bei zwei Nebenbedingungen und 3 Variablen erscheint mir das hier doch etwas komplizierter...


LG
Mathics

        
Bezug
Stationäre Punkte finden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 31.01.2016
Autor: abakus

5 Gleichungen, 5 Unbekannte - ist doch alles bestens.

Mein Tipp: Beginne damit, die erste und die vierte Gleichung zu addieren.

Bezug
                
Bezug
Stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 31.01.2016
Autor: Mathics

Danke für den Tipp :)

Ich hab' jetzt mal so gerechnet:

[mm] L_{x} +L_{y}= [/mm] 2x + y - [mm] \lambda [/mm] - x - y + 1 = 0

= x - [mm] \lambda [/mm] + 1 = 0

= x + 1 = [mm] \lambda [/mm]


[mm] L_{y} [/mm] = x - [mm] \lambda [/mm] - [mm] 2*\mu*y [/mm] = 0

= [mm] \bruch{x - \lambda}{y} [/mm] = [mm] 2*\mu [/mm]


[mm] L_{z}= [/mm] 1 - [mm] 2*\mu*z [/mm] = 0

= [mm] \bruch{1}{z} [/mm] = [mm] 2*\mu [/mm]

[mm] L_{y} [/mm] = [mm] L_{z} [/mm]

[mm] \bruch{x -\lambda}{y} [/mm] = [mm] \bruch{1}{z} [/mm]
[mm] \bruch{x - x - 1}{y} [/mm] = [mm] \bruch{1}{z} [/mm]
[mm] \bruch{-1}{y} [/mm] = [mm] \bruch{1}{z} [/mm]
- z = y
z = - y

[mm] L_{\mu} [/mm] = - [mm] y^2 [/mm] - [mm] z^2 [/mm] = 0

= - [mm] y^2 [/mm] - [mm] (-y)^2 [/mm] + 2 = 0
= - [mm] y^2 [/mm] - [mm] y^2 [/mm] + 2 = 0
= [mm] -2y^2 [/mm] = -2
= [mm] y^2 [/mm] = 1
= y = +/- 1

Durch Einsetzen erhält man dann:

(x=0 , y=1 , z=-1 , [mm] \lambda [/mm] = 1 , [mm] \mu [/mm] = - [mm] \bruch{1}{2}) [/mm]

(x=2 , y=-1 , z=1 , [mm] \lambda [/mm] = 3 , [mm] \mu [/mm] = [mm] \bruch{1}{2}) [/mm]


Hätte ich noch etwas einfacher machen können?


LG
Mathics

Bezug
                        
Bezug
Stationäre Punkte finden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Di 02.02.2016
Autor: meili

Hallo Mathics,


[mm] $L_{\lambda}$ [/mm] umformen zu: x = 1-y

Dies einsetzen in [mm] $L_x$ [/mm] gibt: [mm] $\lambda$ [/mm] = 2-y

x und [mm] $\lambda$ [/mm] ersetzen in [mm] $L_y$, [/mm] nach [mm] $\mu$ [/mm] auflösen: [mm] $\mu [/mm] = [mm] -\bruch{1}{2y}$ [/mm]

[mm] $L_z$ [/mm] nach [mm] $\mu$ [/mm] auflösen: [mm] $\mu [/mm] = [mm] \bruch{1}{2z}$ [/mm]

Gleichsetzen ergibt: z = -y

z in [mm] $L_{\mu}$ [/mm] einsetzen und y berechnen.

Dann wieder rückeinsetzen.


Ob es wirklich einfacher ist?

Gruß
meili

Bezug
        
Bezug
Stationäre Punkte finden: Antwort
Status: (Antwort) fertig Status 
Datum: 05:31 Mo 01.02.2016
Autor: fred97

Wirf y doch raus ! Aus x + y = 1  folgt y=1-x

Damit ist [mm] f_0(x,z)=x+z [/mm] zu maximieren nter der NB

  [mm] (x-1)^2+z^2=2. [/mm]

Du wirst sehen: so gehts viel einfacher.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]