www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStationären Stellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Stationären Stellen
Stationären Stellen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationären Stellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Do 05.07.2012
Autor: Parkan

Aufgabe
[mm]f:\IR^3 \to\IR[/mm]
[mm]f(x,y,z)=2x^2 +y^2 +4z^2 -2yz-2x-6y+8[/mm]

Finde die Stationären Stellen


Soll ich jetzt ganz normal nach x dann nach y dann anch z ableiten dann die 0 Stellen bestimmen dann die zweite Ableitung machen usw? Also ganz normal rechnen wie wenn es eine ganz normale Funktion wäre? Nur das ich hier das für x y z machen muss?

Dieses R3 -> R verstehe ich nicht was bedeutet das?

Danke
Janina


        
Bezug
Stationären Stellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Do 05.07.2012
Autor: schachuzipus

Hallo Janina,


> [mm]f:\IR^3 \to\IR[/mm]
>  [mm]f(x,y,z)=2x^2 +y^2 +4z^2 -2yz-2x-6y+8[/mm]
>  
> Finde die Stationären Stellen
>  
> Soll ich jetzt ganz normal nach x dann nach y dann anch z
> ableiten dann die 0 Stellen bestimmen [ok] dann die zweite
> Ableitung machen usw?

Nein, du musst "nur" die Stellen [mm](x,y,z)[/mm] bestimmen, bei denen die drei partiellen Ableitungen (nach x, nach y, nach z) gleichzeitig 0 werden. Mehr nicht.

> Also ganz normal rechnen wie wenn es
> eine ganz normale Funktion wäre?

Ist dies denn eine unnormale Funktion? ;-)

> Nur das ich hier das für
> x y z machen muss?
>
> Dieses R3 -> R verstehe ich nicht was bedeutet das?

Dass [mm]f[/mm] von [mm]\IR^3[/mm] in die reellen Zahlen ([mm]\IR[/mm]) abbildet.

Du stopfst einen Vektor [mm](x,y,z)^T\in\IR^3[/mm] als Argument rein, und als Funktionswert spuckt [mm]f[/mm] eine reelle Zahl aus, nämlich [mm]2x^2 +y^2 +4z^2 -2yz-2x-6y+8[/mm]

Etwa [mm]f((0,0,0)^T)=8[/mm] oder [mm]\underbrace{ (0,0,0)^T}_{\in\IR^3}\mapsto \underbrace{8}_{\in\IR}[/mm]

>  
> Danke
>  Janina
>  

Gruß

schachuzipus


Bezug
                
Bezug
Stationären Stellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 05.07.2012
Autor: Parkan

Dann soll ich jetzt die Ableitungen bilden, diese als Matric aufschreiben und dann mit gaußschen eleminationsverfahren lösen ?


Bezug
                        
Bezug
Stationären Stellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Do 05.07.2012
Autor: schachuzipus

Hallo nochmal,


> Dann soll ich jetzt die Ableitungen bilden, diese als
> Matric aufschreiben und dann mit gaußschen
> eleminationsverfahren lösen ?


Ob du solch schwere Geschütze auffahren musst? Naja ...

Löse das Gleichungssystem

(1) [mm]f_x(x,y,z)=0[/mm]
(2) [mm]f_y(x,y,z)=0[/mm]
(3) [mm]f_z(x,y,z)=0[/mm]

Rechne erstmal die partiellen Ableitungen aus und schreibe dir das Gleichungssystem mal konkret hin, dann wirst du das schon lösen können ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]