Statistik Schiefe < Stochastik < Hochschule < Mathe < Vorhilfe
|
In der Statistik gibt es ja mehrere Möglichkeiten um die Schiefe zu bestimmen.
In meiner Formelsammlung habe ich einmal "Momentenkoeffizient der Schiefe" und "Quantilskoeffizienten der Schiefe". Nun frage ich mich ist es egal welche Formel ich benutze? Gibt es Vor und Nachteile?
Wäre es nicht einfacher die Schiefe zu berechnen indem man einfach nur den Medien mit dem Durchschnitt vergleicht?
Sprich
Median<Durchschnitt [mm] \Rightarrow [/mm] Rechtschief
Median=Durchschnitt [mm] \Rightarrow [/mm] Symmetrisch
Median>Durchschnitt [mm] \Rightarrow [/mm] Linksschief
Über eine Erklärung die mir beim Verständnis hilft würde ich mich freuen!:)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:46 Do 09.11.2017 | Autor: | Kopfvilla |
Hat keiner eine Idee?:)
|
|
|
|
|
> In der Statistik gibt es ja mehrere Möglichkeiten um die
> Schiefe zu bestimmen.
> In meiner Formelsammlung habe ich einmal
> "Momentenkoeffizient der Schiefe" und
> "Quantilskoeffizienten der Schiefe". Nun frage ich mich ist
> es egal welche Formel ich benutze? Gibt es Vor und
> Nachteile?
Die "Schiefe" einer Verteilung ist zunächst eine aus der
Anschauuung von Diagrammen von Verteilungen gewonnenes,
eher subjektive Bezeichnung für das Maß der Asymmetrie
einer Verteilung. Davon ausgehend wurden dann in der beschreibenden
Statistik von verschiedenen Autoren mathematische Modelle
erdacht, um die "Schiefe" wirklich "messbar" oder berechenbar
zu machen.
Im Wikipedia-Artikel Schiefe (Statistik) werden die
unterschiedlichen Formeln m.E. recht gut erklärt.
Die "genaueste" Formel ist diejenige, bei welcher man sich
auf die gesamte (theoretisch exakt beschriebene) Verteilung
aufgrund von Erwartungswerten und Varianzen stützt.
Natürlich kann aber dieser "Momentenkoeffizient der Schiefe"
nur dann berechnet werden, wenn diese Erwartungswerte und
Varianzen auch tatsächlich bekannt sind.
Soll ein Wert für die Schiefe allein aufgrund einer Liste von
Datenwerten geschätzt werden, benützt man die Formel für
die empirische Schiefe oder die (aus theoretischen Gründen
vorzuziehende) etwas modifizierte erwartungstreue Formel.
> Wäre es nicht einfacher die Schiefe zu berechnen indem man
> einfach nur den Medien mit dem Durchschnitt vergleicht?
> Sprich
> Median<Durchschnitt [mm]\Rightarrow[/mm] Rechtschief
> Median=Durchschnitt [mm]\Rightarrow[/mm] Symmetrisch
> Median>Durchschnitt [mm]\Rightarrow[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Linksschief
Ja, natürlich ist das einfacher. Offenbar geht die Formel $\displaystyle S={\frac {\mu -x_{1/2}}{\sigma }}}$
auf den berühmten Statistiker Karl Pearson zurück. Sie
liefert jedoch ein anderes Maß für die Schiefe, und sie kann
wegen ihrer Einfachheit eine Verteilung auch nur in etwas
gröberer Weise charakterisieren. Im Wikipedia-Artikel steht
auch ein Link zu einem Artikel, in welchem ein theoretischer
Mangel dieser Formel besprochen wird:
Ausnahmen von Faustregel
Quantilskoeffizienten der Schiefe können aus Datenmaterial
auch leicht berechnet werden. Ein solches Maß hat wohl insbesondere
den Vorteil, von sog. "Ausreißern" im Datenmaterial weniger
beinflusst zu sein. In gewissen Fällen ist es also etwas "stabiler".
LG , Al-Chwarizmi
|
|
|
|