www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 So 29.03.2020
Autor: Mathemurmel

Aufgabe
Habe mir die Aufgabe selbst ausgedacht, kann sie aber nicht lösen:
ges.: Fu. 3. Grades mit den vier Eigenschaften:
1) f(0) = 0
2) f '(1) = 0
3) f(2) = 0
4) f '(2) = 0

Lösungsversuch:

f(x) = a [mm] x^3 [/mm] + b x² + c x + d      f '(x) = 3 a x² + 2 b x + c

1) d = 0
2) 3 a + 2 b + c = 0
3) 8 a + 4 b + 2 c = 0     / : 2
3') 4 a + 2 b + c = 0
4) 12 a + 4 b + c = 0

3') - 2) a = 0            d.h. aber, der Grad ist nicht 3 !!!

eine passende Funktion 3. Grades gibt es aber, ich habe sie mir aufgezeichnet.
Wo liegt da mein Fehler?  Ich danke sehr für eine Hilfe!

        
Bezug
Steckbriefaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:07 Mo 30.03.2020
Autor: chrisno

Eine LÖsung, und zwar die mit a = 0 ist f(x) = 0. Ob es noch eine weitere gibt?

Bezug
        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Mo 30.03.2020
Autor: chrisno


> Habe mir die Aufgabe selbst ausgedacht, kann sie aber nicht
> lösen:
>  ges.: Fu. 3. Grades mit den vier Eigenschaften:
>  1) f(0) = 0
>  2) f '(1) = 0
>  3) f(2) = 0
>  4) f '(2) = 0
>  Lösungsversuch:
>  
> f(x) = a [mm]x^3[/mm] + b x² + c x + d      f '(x) = 3 a x² + 2 b
> x + c
>
> 1) d = 0
>  2) 3 a + 2 b + c = 0
>  3) 8 a + 4 b + 2 c = 0     / : 2
>  3') 4 a + 2 b + c = 0
>  4) 12 a + 4 b + c = 0
>  
> 3') - 2) a = 0            d.h. aber, der Grad ist nicht 3
> !!!
>  
> eine passende Funktion 3. Grades gibt es aber, ich habe sie
> mir aufgezeichnet.
>  Wo liegt da mein Fehler?  Ich danke sehr für eine Hilfe!

Das ist der Knackpunkt, wie bist Du zu der Zeichnung gekommen?
Mit
1) f(0) = 0
2) f '(1) = 0
3) f(2) = 0
erzwingst du eine Symmetrie, die ein Polynom 3.Grades ncht haben kann.
Der Hoch- oder Tiefpunkt kan nicht genau in der Mitte zwischen zwei Nullstellen liegen.
Daher bleibt nur f(x) = 0 als Lösung.

Bezug
                
Bezug
Steckbriefaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:02 Mo 30.03.2020
Autor: ChopSuey


>  Mit
> 1) f(0) = 0
>  2) f '(1) = 0
>  3) f(2) = 0
>  erzwingst du eine Symmetrie, die ein Polynom 3.Grades ncht
> haben kann.
> Der Hoch- oder Tiefpunkt kan nicht genau in der Mitte
> zwischen zwei Nullstellen liegen.
>  Daher bleibt nur f(x) = 0 als Lösung.

Aufgrund der angegebenen Informationen ist davon auszugehen, dass bei $x = 2$ eine doppelte Nullstelle vorliegt.

Erste Nullstelle [mm] $x_0 [/mm] = 0$ im Ursprung. Dann folgt ein Extremum bei [mm] $x_1 [/mm] = 1$ und anschließend eine doppelte Nullstelle (lokales Extremum) bei [mm] $x_2 [/mm] = 2$.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]