www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Aufgabe 1
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:09 Di 09.05.2006
Autor: stephan_s

Aufgabe
Der Graph einer ganzrationalen Funktion f 4.Grades ist symmetrisch zur 2.Achse. W(1|0) ist der Wendepunkt des Funktionsgraphen und T( [mm] \wurzel{3}|-1) [/mm] ist ein Tiefpunkt.

a) Bestimme den Funktionsterm von f; untersuche und zeichne den Graphen von f.

b) Zeige, dass die Flächen, die der Graph von f mit der 1.Achse einschlie0, oberhalb der 1.Achse insgesamt den gleichen Inhalt haben wie die unterhalb der 1. Achse.

c) Bestimme k [mm] \in \IR [/mm] so, dass der Graph der Funktion zu [mm] y=x^4 [/mm] - 6x² +k die 1. Achse in seinen Tiefpunkten berührt.

d) _Untersuche, für welche Zahlen k [mm] \in \IR [/mm] die Gleicheung [mm] x^4 [/mm] - 6x² + k =0 keine lösung hat!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kann die Funktion nicht bilden, fände es sehr nett, wenn mir jemand bei dieser Aufgabe helfen könnte! Danke!

        
Bezug
Steckbriefaufgabe: Zu a)
Status: (Antwort) fertig Status 
Datum: 00:11 Mi 10.05.2006
Autor: M.Rex

Hallo,

Ich hoffe, ich kann dir zumindest die Lösung für Aufgabe a) geben.

Da die Funktion achsensymmerisch und 4. Grades ist, gilt:

f(x) = [mm] ax^{4} [/mm] + bx² +c
f´(x) = 4ax³ + 2bx
f´´(x) = 12ax² +2b

Jetzt zu den Bedingungen

"W(1|0) ist der Wendepunkt" [mm] \Rightarrow [/mm] f(1) = 0  und f´´(1) = 0  .

[mm] "(\wurzel{3}|-1) [/mm]  ist ein Tiefpunkt" [mm] \Rightarrow f(\wurzel{3}) [/mm] = -1
und [mm] f(\wurzel{3}) [/mm] = 0.

Mit diesen Bedingungen kannst du a, b und c berechnen.

Gruss

Marius


Bezug
                
Bezug
Steckbriefaufgabe: ein Strich fehlt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mi 10.05.2006
Autor: Herby

Hallo Zusammen,

> Hallo,
>  
> Ich hoffe, ich kann dir zumindest die Lösung für Aufgabe a)
> geben.
>  
> Da die Funktion achsensymmerisch und 4. Grades ist, gilt:
>  
> f(x) = [mm]ax^{4}[/mm] + bx² +c
> f´(x) = 4ax³ + 2bx
>  f´´(x) = 12ax² +2b
>  
> Jetzt zu den Bedingungen
>  
> "W(1|0) ist der Wendepunkt" [mm]\Rightarrow[/mm] f(1) = 0  und
> f´´(1) = 0  .
>  
> [mm]"(\wurzel{3}|-1)[/mm]  ist ein Tiefpunkt" [mm]\Rightarrow f(\wurzel{3})[/mm]
> = -1
>   und [mm]f(\wurzel{3})[/mm] = 0.
>  

da fehlt ein Strichlein:  f´(x)=0


Liebe Grüße
Herby

Bezug
                        
Bezug
Steckbriefaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Mi 10.05.2006
Autor: M.Rex

[...]
>  >  
> > [mm]"(\wurzel{3}|-1)[/mm]  ist ein Tiefpunkt" [mm]\Rightarrow f(\wurzel{3})[/mm]
> > = -1
>  >   und [mm]f(\wurzel{3})[/mm] = 0.
>  >  
>
> da fehlt ein Strichlein:  f´(x)=0
>  

Korrekt, Mein Fehler.

M.Rex

Bezug
        
Bezug
Steckbriefaufgabe: zu c) und d)
Status: (Antwort) fertig Status 
Datum: 08:58 Do 11.05.2006
Autor: Loddar

Hallo Stephan!



> c) Bestimme k [mm]\in \IR[/mm] so, dass der Graph der Funktion zu
> [mm]y=x^4[/mm] - 6x² +k die 1. Achse in seinen Tiefpunkten berührt.

Bestimme zunächst wie gehabt die beiden x-Werte der Tiefpunkte.

Für diese [mm] $x_{T,1}$ [/mm] und [mm] $x_{T,2}$ [/mm] muss dann ebenso gelten:

[mm] $f(x_T) [/mm] \ = \ 0$


  

> d) _Untersuche, für welche Zahlen k [mm]\in \IR[/mm] die Gleicheung
> [mm]x^4[/mm] - 6x² + k =0 keine lösung hat!

Substituiere zunächst: $z \ := \ [mm] x^2$ [/mm]

[mm] $\Rightarrow$ $z^2-6z+k [/mm] \ = \ 0$

Nun die MBp/q-Formel anwenden und untersuchen, für welche $k_$ der Ausdruck unter der Wurzel negativ ist.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]