www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Di 25.09.2007
Autor: risette

Aufgabe
Bestimme auf dem Schaubild der Funktion f(x) = x [mm] \wurzel{x} [/mm] den Punkt P (u|v) mit u<4, für den das Dreieck mit den Ecken P1 (u|0), P2 (4|0) und P (u|v) den maximalen Flächeninhalt hat. Gebe den Flächeninhalt an.

Hallo,
das ist meine Matheaufgabe. Unser Lehrer meinte noch, dass sie nicht so schwer sei, aber ich komme nicht weiter. Ich denke, dass ich irgendwie ein Gleichungssystem aufstellen muss, um dann per Additionsverfahren an u und v ranzukommen, aber mir fällt es schwer, Bedienungen dafür zu finden. Wie verwerte ich z.B. die Information, dass u kleiner als 4 sein muss?
Ich dachte mir schon, dass ich den Punkt P in f(x) einsetzen muss, weil der Punkt ja auf dieser Funktion liegt, nur wie gehts dann weiter?

Bin dankbar für jede Hilfe!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Di 25.09.2007
Autor: Blech


> Bestimme auf dem Schaubild der Funktion f(x) = x [mm]\wurzel{x}[/mm]
> den Punkt P (u|v) mit u<4, für den das Dreieck mit den
> Ecken P1 (u|0), P2 (4|0) und P (u|v) den maximalen
> Flächeninhalt hat. Gebe den Flächeninhalt an.
>  Hallo,
>  das ist meine Matheaufgabe. Unser Lehrer meinte noch, dass
> sie nicht so schwer sei, aber ich komme nicht weiter. Ich
> denke, dass ich irgendwie ein Gleichungssystem aufstellen
> muss, um dann per Additionsverfahren an u und v
> ranzukommen, aber mir fällt es schwer, Bedienungen dafür zu
> finden. Wie verwerte ich z.B. die Information, dass u
> kleiner als 4 sein muss?
> Ich dachte mir schon, dass ich den Punkt P in f(x)
> einsetzen muss,

Richtig, [mm]v=u\sqrt{u}[/mm]

> weil der Punkt ja auf dieser Funktion
> liegt, nur wie gehts dann weiter?

Was willst Du denn machen? Die Dreiecksfläche maximieren.
Also brauchst Du den Flächeninhalt des Dreiecks in Abhängigkeit von u:

[mm]A(u)=\frac{1}{2}g(u)h(u)[/mm]

Was bietet sich nun als Grundlinie an, und was als Höhe?

Dann kannst Du A(u) ableiten, damit das Maximum bestimmen und erhältst damit Dein u, woraus dann auch P folgt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]