www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: Ableitung
Status: (Frage) beantwortet Status 
Datum: 20:09 So 15.02.2009
Autor: GameHe

Aufgabe 1
Eine ganzrationale Funktion zweiten Grades hat eine Nullstelle x=1 und x=3. Zwischen diesen Nullstellen schließt sie mit der x-Achse eine Fläche vom Inhalt 10 2/3 ein.


Aufgabe 2
Der Graph einer Ganzrationalen Funktion vierten Grades ist klappsymetrisch zur y-Achse des Koordinatensystems. Die Wendepunkte liegen jeweils eine Einheit weit von der y-Achse und 3/2 von der x-Achse entfernt. Ihr relatives Maximum nimmt die Funktion im Punkt P(0/4) an.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo,

ich komm leider nich ganz weiter.

so weit hab ichs:

Aufgabe 1 :

f(x) = [mm] ax^{2} [/mm] + bx + c

I: f(1) = 0
II f(2) = 0

das mit der Fläche versteh ich allerdings nicht?

Aufgabe 2 :

f(x) = [mm] ax^{4} [/mm] + [mm] bx^{3} [/mm] + [mm] cx^{2} [/mm] + dx + e

I: f''(3/2) = 1
II: f''(3/2) = -1
III: f'(0) = 4

fehlt mir da noch was ?

Also ich breuchte blos die Ableitungen weiter rechnen kann ichs dann selbst.

        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 15.02.2009
Autor: XPatrickX


> Eine ganzrationale Funktion zweiten Grades hat eine
> Nullstelle x=1 und x=3. Zwischen diesen Nullstellen
> schließt sie mit der x-Achse eine Fläche vom Inhalt 10 2/3
> ein.
>  
>
> Der Graph einer Ganzrationalen Funktion vierten Grades ist
> klappsymetrisch zur y-Achse des Koordinatensystems. Die
> Wendepunkte liegen jeweils eine Einheit weit von der
> y-Achse und 3/2 von der x-Achse entfernt. Ihr relatives
> Maximum nimmt die Funktion im Punkt P(0/4) an.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> hallo,

Hey

>
> ich komm leider nich ganz weiter.
>  
> so weit hab ichs:
>  
> Aufgabe 1 :
>  
> f(x) = [mm]ax^{2}[/mm] + bx + c
>  
> I: f(1) = 0 [ok]
>  II [mm] f(\red{3}) [/mm] = 0 [ok]
>  
> das mit der Fläche versteh ich allerdings nicht?

Es geht um Flächenberechnung, also musst du das Integral mit ins Spiel bringen. Hier lautet deine 3. Bedingung somit:
[mm] \int_0^3 [/mm] |f(x)| dx = [mm] 10\frac{2}{3} [/mm]

>  
> Aufgabe 2 :
>  
> f(x) = [mm]ax^{4}[/mm] + [mm]bx^{3}[/mm] + [mm]cx^{2}[/mm] + dx + e
>  

Ich gehe davon aus, dass klappsymmetrisch ein anderer Begriff für achsensymmetrisch sein soll. Wann ist denn ein Polynom achsensymmetrisch? Welche Exponenten treten dort nur auf?



> I: f''(3/2) = 1 [notok]
>  II: f''(3/2) = -1 [notok]

Zunächst mal liefert dir diese Information einen Punkt auf der Kurve:
[mm] f(1)=\pm [/mm] 3/2. Das genaue Vorzeichen kennst du allerdings nicht.
Nun weißt du, dass dieser Punkt auch noch ein Wendepunkt ist. Wie muss denn dann die 2. Ableitung an der Stelle 1 sein??

>  III: f'(0) = 4 [ok]

Zusätzlich weißt du, dass (0,4) ein Punkt der Funktion ist:
f(0)=4

>  
> fehlt mir da noch was ?
>
> Also ich breuchte blos die Ableitungen weiter rechnen kann
> ichs dann selbst.

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]