www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisStetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Stetig
Stetig < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 08.05.2007
Autor: dena

Aufgabe
Sei P der Vektorraum der Polynome über [mm] \IR. [/mm]
Zu einem Polynom p(t) = [mm] \summe_{k=0}^{n} a_{k} t^{k} [/mm] sei
[mm] \parallel [/mm] p [mm] \parallel [/mm] = [mm] \summe_{k=0}^{n} |a_{k}|. [/mm]

Man untersuche, ob folgende lineare Abbildung l: P [mm] \to \IR [/mm] stetig ist und ermittle gegebenfalls [mm] \parallel [/mm] l [mm] \parallel [/mm]

Hallo, bräuchte eine Erklärung..

Antwort:
l ist stetig mit [mm] \parallel [/mm] l [mm] \parallel [/mm] = 1:

Jedenfalls ist für jedes Poynom p(t) = [mm] \summe_{k=0}^{n} a_{k} t^{k} [/mm]

|l(p)| [mm] \le \integral_{0}^{1}{|p(t)| dt} \le \integral_{0}^{1}{(\summe_{k=0}^{n} |a_{k}| t^{k} )dt} \le \integral_{0}^{1}{(\summe_{k=0}^{n} |a_{k}| )dt} [/mm] = [mm] \parallel [/mm] p [mm] \parallel [/mm]

Also ist [mm] \parallel [/mm] l [mm] \parallel \le [/mm] 1  

(???WARUM???? Meine Vermutung: [mm] \parallel [/mm] p [mm] \parallel [/mm] = 1, weils ja normiert ist... ich glaube, ich stehe mal wieder auf der Leitung)

Für das konstante Polynom p [mm] \equiv [/mm] 1 ist [mm] \parallel [/mm] l [mm] \parallel \ge [/mm] |l(p)| =1.

Wäre froh, wenn mir jemand dies erklären könnte!

Vielen Dank!

lg dena  

        
Bezug
Stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Di 08.05.2007
Autor: wauwau

Welche lineare Abbildung???

Bezug
                
Bezug
Stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Di 08.05.2007
Autor: dena

ups...

natürlich habe ich was vergessen:

l(p) = [mm] \integral_{0}^{1}{p(t) dt} [/mm]

danke!

Bezug
        
Bezug
Stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Di 08.05.2007
Autor: wauwau

[mm] p(t)=\summe_{k=0}^{n}a_{k}*t^k [/mm]

l(p(t))= [mm] \integral_{0}^{1}p(t)dt [/mm] = [mm] \summe_{k=0}^{n}\bruch{a_{k}}{k+1} [/mm]

zu zeigen:

l ist stetig

denn



berechne ||l|| welche Norm??  



Bezug
                
Bezug
Stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Di 08.05.2007
Autor: dena

Welche Norm weiß ich leider auch nicht...

Die Frage steht so im Buch.. ich vermute
[mm] \parallel [/mm] l [mm] \parallel_{l_{1}} [/mm]

oder habe ich jetzt deine Frage nicht verstanden?

lg dena

Bezug
        
Bezug
Stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mi 09.05.2007
Autor: wauwau

Also die Stetigkeit hast du ja schon mit deinen Ungleichungen gezeigt.

da es sich bei der Abbildung um eine Lineare Abbildung zwischen Banachräumen handelt

ist, wenn man || || als Norm und nicht als Metrik sieht, die Normdefinition (im Gegensatz zur Metrik)

[mm] ||l(p)||=\sup_{x\not=0} (\bruch{||l(p)||}{||p||}) [/mm] wobei die im sup vorkommenden || || wiederum die Metrik bezeichnen also für p die vorgegebene für [mm] l(p)\in \IR [/mm] die Normale Betragsfunktion.

und damit ist deine Argumentation schlüssig und es ist ||l(p)||=1

Bezug
                
Bezug
Stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Mi 09.05.2007
Autor: dena

super wauwau!

vielen dank, jetzt leuchtet es mir ein :-)

lg dena

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]