www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetig / Unstetig
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetig / Unstetig
Stetig / Unstetig < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig / Unstetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Do 14.10.2010
Autor: Kuriger

Hallo

r(t) = [mm] \vektor{t \\ \bruch{t^2 -9}{t^2 + 3t}} [/mm]

Ich soll nun die Werte von t bestimmen, für welche die Vektorfunktion r(t) stetig ist.
Also die "kritischen Punkte" sind ja t = 0 und t = -3, da hier die Funktion nicht definiert ist. Also ist es an diesen Stellen unstetig und für die anderen Werte ist die Funktion stetig?

        
Bezug
Stetig / Unstetig: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Do 14.10.2010
Autor: Sax

Hi,

die kritischen Punkte hast du richtig erkannt, in allen Punkten des Definitionsbereiches [mm] D_f [/mm] = [mm] \IR\backslash\{0;-3\} [/mm] ist die Funktion stetig,; wo sie nicht definiert ist, kann sie auch nicht stetig sein.
Aber : bei t = -3 kann die Funktion stetig fortgesetzt werden.
Stichwordt : Zähler und Nenner faktorisieren, kürzen.

Gruß Sax.

Bezug
                
Bezug
Stetig / Unstetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Fr 15.10.2010
Autor: Kuriger

Hallo

Ja mit faktorisieren fliegt das (t-3) im Zähler und Nenner raus. Aber was heisst das jetzt nun? Ist die FUnktion nur bei t = 0 unstetig?

Danke, gruss Kuriger

Bezug
                        
Bezug
Stetig / Unstetig: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Fr 15.10.2010
Autor: Al-Chwarizmi


> Hallo
>  
> Ja mit faktorisieren fliegt das (t-3) im Zähler und Nenner
> raus. Aber was heisst das jetzt nun? Ist die FUnktion nur
> bei t = 0 unstetig?
>  
> Danke, gruss Kuriger


Guten Abend Kuriger,

hast du meine Antwort gelesen ?
Ich denke, dort wird deine Frage vollständig beantwortet.
Da die Funktion bei t=0 gar nicht definiert ist, ist sie an
dieser Stelle weder stetig noch unstetig. Beachte aber auch
meine Bemerkung betr. die "ältere" Auffassung dieser Begriffe.

LG    Al-Chw.


Bezug
        
Bezug
Stetig / Unstetig: Unstetigkeit: alte Auffassung
Status: (Antwort) fertig Status 
Datum: 10:40 Do 14.10.2010
Autor: Al-Chwarizmi


> Hallo
>  
> r(t) = [mm]\vektor{t \\ \bruch{t^2 -9}{t^2 + 3t}}[/mm]
>  
> Ich soll nun die Werte von t bestimmen, für welche die
> Vektorfunktion r(t) stetig ist.
>  Also die "kritischen Punkte" sind ja t = 0 und t = -3, da
> hier die Funktion nicht definiert ist. Also ist es an
> diesen Stellen unstetig und für die anderen Werte ist die
> Funktion stetig?


Zusatz zur Antwort von Sax:

Wenn man sich streng an die Definition hält, nach welcher
sich die Begriffe "stetig" und auch "unstetig" nur auf solche
Stellen beziehen, an welchen eine Funktion überhaupt
definiert ist, ist die vorliegende Funktion auf ihrem gesamten
Definitionsbereich [mm] $\ID\ [/mm] =\ [mm] \IR\,\backslash\,\{\,0\,,-3\,\}$ [/mm] stetig. Unstetigkeitsstellen
hat sie keine. An den Stellen 0 und -3 ist die Funktion
nicht stetig (da gar nicht definiert), aber auch nicht unstetig.

Nach einer älteren Auffassung hätte man allerdings bei
diesen Stellen durchaus von Unstetigkeiten gesprochen.
In diesem politisch nicht mehr korrekten Sinne kann
man dann auch von einer "hebbaren Unstetigkeit" an der
Stelle t=-3 sprechen.



LG      Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]