www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationStetig differenzierbar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Stetig differenzierbar
Stetig differenzierbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig differenzierbar: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:06 Mo 12.01.2009
Autor: MaRaQ

Aufgabe
Sei f(0) = 0 und f(x) = [mm] x^n [/mm] * [mm] sin(\bruch{1}{x} [/mm] für x [mm] \not= [/mm] 0. Für welche n [mm] \in \IN_0 [/mm] ist f im Nullpunkt differenzierbar bzw. stetig differenzierbar.  

Gute Frage - nächste Frage?
Hier musste ich mich schon sehr lange einlesen, bis ich überhaupt einen Denkansatz hatte, worauf die Aufgabe vielleicht hinauslaufen könnte.

Für x [mm] \rightarrow [/mm] 0 nimmt [mm] sin(\bruch{1}{x}) [/mm] alle Werte des Intervalls [-1,1] an - und zwar für den linken Grenzwert genauso wie für den rechten Grenzwert.

Also hängt alles von [mm] x^n [/mm] ab. für n = 0 steht da der Term
f(x) = [mm] sin(\bruch{1}{x}) [/mm]
Das ist in 0 weder stetig noch differenzierbar und schon gar nicht stetig differenzierbar.

für n = 1 haben wir
f(x) = [mm] x*sin(\bruch{1}{x}) [/mm]
und [mm] \limes_{x\rightarrow0+} x*sin(\bruch{1}{x}) [/mm] = 0, [mm] \limes_{x\rightarrow0-} x*sin(\bruch{1}{x}) [/mm] = 0, f(0) = 0.

f'(0) = 0 und f'(x) = [mm] sin(\bruch{1}{x}) [/mm] + [mm] xcos(\bruch{1}{x}) [/mm]
Das ist in 0 nicht stetig, da linker und rechter Grenzwert von 0 nicht bestimmbar sind.
[mm] \Rightarrow [/mm] f ist für n = 1 differenzierbar, aber nicht stetig differenzierbar.

SOLLTE dieser Weg der richtige sein, so ist mir auch der Rest der Aufgabe klar, wenn nicht, macht es wenig Sinn, hier weiter zu notieren.

Ergo: Bin ich auf dem Holzweg?

LG, Tobias


        
Bezug
Stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 12.01.2009
Autor: reverend

Ich finde, das fängt gut an. Allerdings gibt es ja zwei mögliche Ausgänge in diesem Verlauf, und der andere zeigt sich bei [mm] n\ge2. [/mm] Mach doch mal einen dieser Fälle.

Bezug
                
Bezug
Stetig differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Mo 12.01.2009
Autor: MaRaQ

So sieht meine weitere Bearbeitung dazu aus:

Erst einmal (zum eigenen Verständnis) noch den Fall n=2 ausgeschrieben...

n = 2:

f(x) = [mm] x^2 [/mm] * [mm] sin(\bruch{1}{x}) [/mm]
f'(0) = 0, f'(x [mm] \not= [/mm] 0) = [mm] 2x*sin(\bruch{1}{x}) [/mm] + [mm] x^2(cos(\bruch{1}{x})) [/mm]
[mm] \limes_{x\rightarrow0+} 2x*sin(\bruch{1}{x}) [/mm] + [mm] x^2(cos(\bruch{1}{x})) [/mm] = 0, [mm] \limes_{x\rightarrow0-} 2x*sin(\bruch{1}{x}) [/mm] + [mm] x^2(cos(\bruch{1}{x})) [/mm] = 0
[mm] \Rightarrow [/mm] für n=2 ist f stetig differenzierbar.

Erkenntnis: für [mm] n\ge2 [/mm] ist f stetig differenzierbar, da in der Ableitung mit [mm] x^n [/mm] bzw. [mm] nx^{n-1} [/mm] Faktoren stehen bleiben, die für [mm] x\rightarrow0 [/mm] gegen 0 gehen und somit links- und rechtseitige Limites der Ableitung gegen 0 gehen...

Dies müsste ich jetzt noch "formelmäßig" verpacken.

Bezug
                        
Bezug
Stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Di 13.01.2009
Autor: reverend

Jau. Sonst gut.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]