www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetig und Differenzierbar?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetig und Differenzierbar?
Stetig und Differenzierbar? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig und Differenzierbar?: Idee
Status: (Frage) beantwortet Status 
Datum: 22:06 So 30.04.2017
Autor: Kopfvilla

Aufgabe
[mm] f(x)=\begin{cases} ax^2+b, & \mbox{für } x \mbox{ größergleich 1} \\ x, & \mbox{für } x \mbox{ echt kleiner 1} \end{cases} [/mm]

für welche Werte a,b [mm] \in \IR [/mm] ist die Funktion stetig und differenzierbar?

Guten Tag meine Idee ist folgende,
da h(x)=x ist und eine Steigung von 1 hat muss auch [mm] g(x)=ax^2+b [/mm] an dem Punkt (1,1) eine Steigung von 1 haben.

Zuerst habe ich die Funktion g(x) abgeleitet folgt
g'(x)=2ax+b

jetzt gleich 1 setzen
2ax+b=1

für x setzen wir 1 ein

2a+b=1 (Den Term nach a und nach b aufgelösen)

[mm] a=\bruch{1-b}{2} [/mm]

b=1-2a

Habe ich damit die Aufgabe gelöst für a und b dass sie an dem Punkt (1,1) für g(x) und h(x) stetig und differenzierbar sind?

Über Ergänzungen würden ich mich freuen

LG Kopfvilla

        
Bezug
Stetig und Differenzierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 30.04.2017
Autor: meili

Hallo Kopfvilla,

> [mm]f(x)=\begin{cases} ax^2+b, & \mbox{für } x \mbox{ größergleich 1} \\ x, & \mbox{für } x \mbox{ echt kleiner 1} \end{cases}[/mm]
>  
> für welche Werte a,b [mm]\in \IR[/mm] ist die Funktion stetig und
> differenzierbar?
>  Guten Tag meine Idee ist folgende,
>   da h(x)=x ist und eine Steigung von 1 hat muss auch
> [mm]g(x)=ax^2+b[/mm] an dem Punkt (1,1) eine Steigung von 1 haben.

[ok]

>  
> Zuerst habe ich die Funktion g(x) abgeleitet folgt
> g'(x)=2ax+b

[notok]
g'(x) = 2ax

>  
> jetzt gleich 1 setzen

[ok]

>  2ax+b=1

2ax = 1

>  
> für x setzen wir 1 ein

[ok]

>  
> 2a+b=1 (Den Term nach a und nach b aufgelösen)

2a = 1

>  
> [mm]a=\bruch{1-b}{2}[/mm]

>  
> b=1-2a
>  
> Habe ich damit die Aufgabe gelöst für a und b dass sie an
> dem Punkt (1,1) für g(x) und h(x) stetig und
> differenzierbar sind?

Nein noch nicht ganz.
Bis jetzt hast du nur die Ableitung im Punkt (1,1) benutzt.
Aber wie du richtig bemerkt hast, geht f(x) durch den Punkt (1,1),
wenn f stetig und differenzierbar ist.
Wenn du noch g(1) = 1 benutzt, bekommst du auch eine Zahl für b heraus.

>  
> Über Ergänzungen würden ich mich freuen
>  
> LG Kopfvilla

Gruß
meili

Bezug
        
Bezug
Stetig und Differenzierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Mo 01.05.2017
Autor: Diophant

Hallo,

um den Hinweis von meili zu konkretisieren:

Mit den Bedingungen [mm]f(1)=1 \wedge f'(1)=1[/mm] bekommt man ein Lineares Gleichungssystem zur Bestimmung von a und b.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]