www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStetige Zufallsvariable
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Stetige Zufallsvariable
Stetige Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Zufallsvariable: Dichtefunktion
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 13.11.2013
Autor: apfelkeks

Aufgabe 1
Bestimmen Sie den jeweiligen Parameter in der Dichtefunktion f(x) der stetigen Zufallsvariable X durch Normierung:
a) [mm] \\f(x)=2x+b [/mm] für [mm] \\(0<=x<=4) [/mm]
b) [mm] \\f(x)=c [/mm] für [mm] \\(a<=x<=b) [/mm]
c) [mm] \\f(x)=a(1+x) [/mm] für [mm] \\(-1<=x<=1) [/mm]

Aufgabe 2
Eine stetige Zufallsvariable X besitzt die Dichtefunktion
[mm] f(n)=\begin{cases} kx, & \mbox{für } 0<=x<=10 \\ 0, & \mbox{alle sonst}\end{cases} [/mm]
a) Bestimmen Sie den Parameter k und [mm] \\P(X>=5). [/mm]
b) Bestätigen Sie dass es sich um eine Wahrscheinlichkeitsdichte handelt und geben sie die zugehörige Verteilungsfunktion an.

Hallo zusammen,

ich kann mit keiner der beiden Aufgaben wirklich was anfangen.
Bei Aufgabe 1 soll ich die Parameter durch Normierung bestimmen. Ich weiß also, dass die Fläche der Funktion, z. B. bei a) zwischen 0 und 4, den Inhalt 1 haben muss. Aber wie komme ich nun auf das b?

Selber Fall mit Aufgabe 2. Woher nehme ich den Parameter? Sobald ich den habe kann ich die Wahrscheinlichkeit berechnen. Wie bestätige ich, dass es sich um eine Dichte handelt?

Besten Dank und viele Grüße
apfelkeks

        
Bezug
Stetige Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 13.11.2013
Autor: Gonozal_IX

Hiho,

> Bei Aufgabe 1 soll ich die Parameter durch Normierung
> bestimmen. Ich weiß also, dass die Fläche der Funktion,
> z. B. bei a) zwischen 0 und 4, den Inhalt 1 haben muss.

[ok]

> Aber wie komme ich nun auf das b?

Berechne doch mal die von dir besagte Fläche bei a)
Was kommt da raus?

Gruß,
Gono

Bezug
                
Bezug
Stetige Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Do 14.11.2013
Autor: apfelkeks

Hallo Gono,

Danke für deine Antwort!

[mm] \\f(x)=2x+c [/mm]
[mm] \integral_{}^{}{2x+c dx} \\= \\x²+cx [/mm]
[mm] \integral_{0}^{4}{2x+c dx} \\= \\16+4c [/mm]

Oh! Ist [mm] \\c=-3,75? [/mm] So einfach ist das? :)

Und zur zweiten Aufgabe, a):

[mm] \integral_{0}^{10}{f(x) dx} \\= \\50k [/mm]
Ist [mm] \\k=\bruch{1}{50} [/mm] ?

[mm] \\P(X>=5) \\= \\1-P(X<5) [/mm] = [mm] \bruch{1}{4} [/mm] ?

und zu b)
Ich gehe ja schon davon aus dass die Fläche 1 ist. Was fehlt noch zum Nachweis?
Wo ist der Unterschied zwischen einer Verteilungsfunktion und einer Dichtefunktion?

Grüße
apfelkeks

Bezug
                        
Bezug
Stetige Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Fr 15.11.2013
Autor: Infinit

Hallo apfelkeks,
die Rechnungen sind fast okay. Schaue bei der Berechnung der Verteilungsfunktion in der zweiten Aufgabe nochmal nach der berechneten Verteilungsfunktion. Die hast Du nirgendwo mal hingeschrieben und ich bekomme ein anderes Ergebnis für P(X >= 5) raus.
Die Integration über die Dichte ergibt die Verteilungsfunktion. Die Dichte ist in ihrem Definitionsbereich immer positiv und demzufolge ist die Verteilungsfunktion eine monoton steigende Fuktion zwischen 0 und 1.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]