www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: in zweiter Komponente?
Status: (Frage) beantwortet Status 
Datum: 17:53 So 11.01.2015
Autor: mikexx

Aufgabe
Sei [mm] $\mathbb{D}=\left\{z\in\mathbb{C}: \lvert z\rvert <1\right\}$ [/mm] und definiere [mm] $\mathcal{P}\colon\mathbb{D}\times\mathbb{D}\to\mathbb{R}$ [/mm] durch
$$
[mm] \mathcal{P}(x,y):=\begin{cases}\frac{1-\lvert x\rvert^2}{\lvert x-y\rvert^2}, & x\neq y\\0, & x=y\end{cases}. [/mm]
$$


Ist diese Funktion in der zweiten Komponente stetig?

Hi, ich weiß grad nicht, wie ich das zeigen oder widerlegen kann.

Kann jemand bitte helfen?

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 So 11.01.2015
Autor: chrisno

Zuerst einmal kannst Du die Defintion der Stetigkeit hinschreiben und dann für diesen Fall konkretisieren, was zu zeigen wäre.

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:00 Mo 12.01.2015
Autor: fred97


> Sei [mm]\mathbb{D}=\left\{z\in\mathbb{C}: \lvert z\rvert <1\right\}[/mm]
> und definiere
> [mm]\mathcal{P}\colon\mathbb{D}\times\mathbb{D}\to\mathbb{R}[/mm]
> durch
> [mm][/mm]
>  [mm]\mathcal{P}(x,y):=\begin{cases}\frac{1-\lvert x\rvert^2}{\lvert x-y\rvert^2}, & x\neq y\\0, & x=y\end{cases}.[/mm]
> [mm][/mm]
>  
>
> Ist diese Funktion in der zweiten Komponente stetig?
>  Hi, ich weiß grad nicht, wie ich das zeigen oder
> widerlegen kann.

Solche Anfragen von Mathematikstudenten im Hauptstudium liebe ich: der Fragesteller hat sich intensiv um die nötigen Definitionen gekümmert und hat sich klar gemacht, was zu tun ist .

P ist in der zweiten Komponente stetig

[mm] \gdw [/mm]

für jedes feste [mm] x_0 \in \mathbb{D} [/mm] ist die Funktion [mm] y\to P(x_0,y) [/mm] auf  [mm] \mathbb{D} [/mm]   stetig.

Nun war der Fragesteller so pfiffig, und hat sich zielstrebig den Fall [mm] x_0=0 [/mm] herausgepickt.

Lobenswert !

FRED

>  
> Kann jemand bitte helfen?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]