www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:06 So 11.12.2005
Autor: Lemma_XX

Seien die Funktionen [mm] f_{+}, f_{-} [/mm] : [mm] D\to\IR [/mm] definiert durch

[mm] f_{+}(x)=\begin{cases} f(x), & \mbox{falls} f(x) \ge{0} \\ 0, & \mbox{sonst} \end{cases} [/mm]
[mm] f_{-}(x)=\begin{cases} - f(x), & \mbox{falls} f(x) \le{0} \\ 0, & \mbox{sonst} \end{cases} [/mm]

Beweisen Sie, dass
a) f = [mm] f_{+} [/mm] - [mm] f_{-} [/mm] und  [mm] \vmat{f} [/mm] = [mm] f_{+} [/mm] + [mm] f_{-} [/mm]
b) f ist genau dann stetig wenn [mm] f_{+} [/mm] und [mm] f_{-} [/mm] stetig sind

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Frage
wie soll ich da nur anfangen, soll dies mit einem Beispiel zeigen.
ich wäre wenn mir jemdan einige tipps geben könnte

gruss
Lemma_XX

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 So 11.12.2005
Autor: SEcki


> Beweisen Sie, dass
>  a) f = [mm]f_{+}[/mm] - [mm]f_{-}[/mm] und  [mm]\vmat{f}[/mm] = [mm]f_{+}[/mm] + [mm]f_{-}[/mm]

Das ist zu einfach zum Vorrechnen - wo gibt's denn da Probleme?

>  b) f ist genau dann stetig wenn [mm]f_{+}[/mm] und [mm]f_{-}[/mm] stetig
> sind

Äquivalenz, also zwei Richtungen - von links nach rechts: [m]f_+[/m] lässt sich auch so darstellen: [m]\max\{f(x),0\}[/m]- Ähnlich für die andere Funktion. Was folgt denn nun? Was sind denn max und min von zwei stetigen Funktionene. andere Richtung: summe zweier stetiger Funktionen.

> wie soll ich da nur anfangen, soll dies mit einem Beispiel
> zeigen.

Blos nicht - du sollst das für jede stetige Funktion zeigen.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]