www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Di 24.01.2006
Autor: SirBigMac

Aufgabe
Sei S [mm] \subset \IR [/mm] abzählbar, sei M [mm] \subset \IN [/mm] und sei [mm] \beta [/mm] : M [mm] \to [/mm] S bijektiv. Sei f : [mm] \IR \to \IR [/mm]
definiert durch f(x)=  [mm] \summe_{k \in \IN ; \beta (k) \le x}^{} 2^{-k}. [/mm]

Zeigen Sie:
a) f ist rechtsstetig
b) Ist a= [mm] \beta [/mm] (n) für ein n [mm] \in [/mm] M, dann gilt: f(a-)+ [mm] 2^{-n} [/mm] = f(a)

Bin mal wieder mit dieser Aufgabe total überfordert!

Ich versteh erst gar nicht wie die Funktion denn aussehen soll, geschweige denn, wie ich rechts- oder linksstetigkeit zeige (die def. davon hatten wir schon).

Bei b) hab ich leider genauso wenig Ahnung!

Wär net, wenn mir jemand erklären könnte, was bei dieser Aufgabe überhaupt verlangt ist, bzw. wie man rechtsstetigkeit zeigt!

Lg SirBigMac

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mi 25.01.2006
Autor: mathiash

Hallo und guten Morgen,

also Rechtsstetigkeit soll doch heissen, dass fuer alle [mm] x\in \IR [/mm] gilt:

[mm] \lim_{h\to 0,h>0}f(x+h)=f(x). [/mm]

Ok, das f(x) haengt doch davon ab, welche Werte [mm] \beta(k) [/mm] groesser oder gleich x sind, und
dies sind abzaehlbar viele Werte. Also:

Fall 1: Es gibt k mit [mm] \beta(k)=x. [/mm] Da [mm] \beta [/mm] bijektiv von M nach S abbildet und M,S abz. sind,
gibt es dann doch ein [mm] \delta [/mm] >0 mit

[mm] (x,x+\delta)\cap S=\emptyset [/mm]     (offenes Intervall ist gemeint).

Aber dann ist doch fuer [mm] 0
Uebrigens gilt linksseitige Stetigkeit nicht, gerade die Stellen [mm] x\in [/mm] S sind da Gegenbeispiele.

Zu (b):
Ja genau, das meinte ich schon implizit in der letzten Bemerkung zu (a). Nimm [mm] a=\beta(n), [/mm] dann kommt ja an der Stelle a der Summand [mm] 2^{-n} [/mm] dazu (laut Def. der Funktion f), und fuer alle b<a kommt er noch nicht dazu, also in einer kleinen Umgebung links von a gilt [mm] f(b)=f(a)-2^{-n}. [/mm]

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]