www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle AnalysisStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis" - Stetigkeit
Stetigkeit < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Lösung zur Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:43 Di 11.12.2007
Autor: alpakas

Aufgabe
a) Für die Funktion f: [mm] \IR\to\IR [/mm] gelte f(0)=1 sowie f(x+y)=f(x)f(y)  für alle [mm] x,y\in\IR [/mm]

man zeige: Ist f im Nullpunkt stetig, so ist f auf ganz [mm] \IR [/mm] stetig.

b) Für die Funktion [mm] g:\IR\to\IR [/mm]  gelte [mm] |g(x)|\leM [/mm] für alle [mm] x\in\IR. [/mm]
Zeigen sie: Die Funktion [mm] f:\IR\to\IR [/mm] , f(x):=xg(x) ist in 0 stetig.

Hallo!

ich habe leider gar keine Ahnung wie man das macht und worum es überhaupt geht.  :( ich war eine Woche krank und keiner kann es mir erklären und ich muss das bis Freitag aber können :(  

Bitte helft mir!!

lg alpakas

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Mi 12.12.2007
Autor: MatthiasKr

Hi,
> a) Für die Funktion f: [mm]\IR\to\IR[/mm] gelte f(0)=1 sowie
> f(x+y)=f(x)f(y)  für alle [mm]x,y\in\IR[/mm]
>  
> man zeige: Ist f im Nullpunkt stetig, so ist f auf ganz [mm]\IR[/mm]
> stetig.

stetigkeit in [mm] x_0 [/mm] bedeutet doch folgendes: geht x gegen [mm] x_0 [/mm] so geht auch f(x) gegen [mm] f(x_0). [/mm] Das kann man so umformulieren: fuer y gegen 0 muss [mm] f(x_0+y) [/mm] gegen [mm] f(x_0) [/mm] gehen. Wenn du das einsiehst, bist du aber schon fast fertig, weil nach Vor. gilt

[mm] $f(x_0+y)=\ldots=\ldots$? [/mm]


>  
> b) Für die Funktion [mm]g:\IR\to\IR[/mm]  gelte [mm]|g(x)|\leM[/mm] für alle

... hier fehlt irgendetwas...

> [mm]x\in\IR.[/mm]
>  Zeigen sie: Die Funktion [mm]f:\IR\to\IR[/mm] , f(x):=xg(x) ist in
> 0 stetig.
>  Hallo!
>  
> ich habe leider gar keine Ahnung wie man das macht und
> worum es überhaupt geht.  :( ich war eine Woche krank und
> keiner kann es mir erklären und ich muss das bis Freitag
> aber können :(  
>

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]