www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Gleichmäßige Stetigkeit
Status: (Frage) beantwortet Status 
Datum: 13:00 Fr 29.08.2008
Autor: Linda89

Aufgabe
Verständnisfrage, siehe unten

Hallo,

ich bin grade am lernen für meine Klausur, nun steht hier im Skript:

ist f : [a,b] -> R stetig, so ist f gleichmäßig stetig


aber ich habe gedacht, gleichmäßig stetig ist spezieller als stetig, also ich denke, der Satz geht eher andersrum. Vor allem ist doch z.B. [mm] f(x)=x^2 [/mm] stetig, aber nicht gleichmäßig stetig, oder?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Fr 29.08.2008
Autor: angela.h.b.

  
> ich bin grade am lernen für meine Klausur, nun steht hier
> im Skript:
>  
> ist f : [a,b] -> R stetig, so ist f gleichmäßig stetig
>  
>
> aber ich habe gedacht, gleichmäßig stetig ist spezieller
> als stetig,

Hallo,

da hast Du recht.

es gilt:  gleichmäßig stetig ==> stetig,

und die Umkehrung gilt i.a. nicht.


Aber schau Dir mal genau an, wovon oben die Rede ist: von einer Funktion auf dem abgeschlossenen Intervall [a,b]. Das ist der casus knacktus.
Auf abgeschlossenen (!)  Intervallen stetige Funktionen sind gleichmäßig stetig.

> also ich denke, der Satz geht eher andersrum.
> Vor allem ist doch z.B. [mm]f(x)=x^2[/mm] stetig, aber nicht
> gleichmäßig stetig, oder?

Wenn Du f als Funktion von [mm] \IR \to \IR [/mm] betrachtest, stimmt das.
Schränkst Du sie aber ein auf z.B. [815, 4711], dann ist sie glm stetig.

Gruß v. Angela

>  



Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 29.08.2008
Autor: ThomasG

Hallo,

die gleichmaessige Stetigkeit folgt mit dem Satz von Cantor

Ein geschlossenes Intervall ist eine kompakte Teilmenge der reellen Zahlen.

[]siehe hier

Gruss
Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]