www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Stetigkeit
Stetigkeit < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 17.03.2009
Autor: mimmimausi

Hallo,

hab mal ne frage.
gibt es funktionen, die differenzierbar aber nicht stetig sind?

Ich würde sagen nein, da man nur stetige funktionen ableiten kann.
richtig?

mfg

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 17.03.2009
Autor: pelzig

Ist eine Funktion in einem Punkt differenzierbar, dann ist sie in dem Punkt auch stetig. Das muss man halt mal beweisen.

Gruß, Robert

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Di 17.03.2009
Autor: Somebody


> Hallo,
>  
> hab mal ne frage.
>  gibt es funktionen, die differenzierbar aber nicht stetig
> sind?
>  
> Ich würde sagen nein, da man nur stetige funktionen
> ableiten kann.
>  richtig?

Dass aus Differenzierbarkeit von $f(x)$ an einer Stelle [mm] $x_0$ [/mm] auch Stetigkeit von $f$ an dieser Stelle folgt, kannst Du Dir leicht plausibel machen, indem Du

[mm]f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}[/mm]

betrachtest. Differenzierbarkeit an der Stelle [mm] $x_0$ [/mm] bedeutet ja, dass dieser Grenzwert existiert. Da aber für [mm] $x\rightarrow x_0$ [/mm] der Nenner [mm] $x-x_0$ [/mm] gegen $0$ geht, ist dies nur möglich, wenn auch [mm] $f(x)-f(x_0)$ [/mm] gegen $0$ geht, was nichts anderes bedeutet, als dass [mm] $\lim_{x\rightarrow x_0}f(x)=f(x_0)$: [/mm] dass also $f$ an der Stelle an [mm] $x_0$ [/mm] stetig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]