Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hi,
wir haben in der Vorlesung Stetigkeiten eingeführt, aber nie ein Beispiel mit einer Exponentialfunktion und jetzt habe ich eine auf dem Übungszettel und weiß nicht wie ich anfangen soll.
Die Funktion lautet:
f: [mm] \IR [/mm] /to [mm] \IR [/mm] ,
f(x)= [mm] e^{\bruch{-1}{x^{2}}} [/mm] für x [mm] \not= [/mm] 0
f(x)= 0 für x =0
Also komm eigentlich ziemlich gut mit der Delta-Epsilon Methode klar, aber wir hatten auch das Folgenkriterium in der Vorlesung.
Ich hoffe die Aufgabe ist lösbar für jemanden wie mich :(
LG
Niemand
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:54 Di 08.12.2009 | Autor: | Fry |
Hallo,
also du musst überprüfen, ob
für alle [mm] a\in\IR [/mm] gilt: [mm] \lim_{x\to a}f(x)=f(a)
[/mm]
Dabei reicht es die Stellen zu untersuchen, die sozusagen "kritisch" sind, denn eigentich sind alle "normalen" Funktionen wie Polynomfunktionen, trigometrische Funktionen, e-Funktion etc. und solche, die aus ihnen kombiniert sind, stetig, z.B. [mm] sin(x+x^2), e^x^2 [/mm] sind stetig, da [mm] sin(x),x,x^2, e^x [/mm] stetige Funktionen. Man muss also nur Stellen untersuchen, wo diese Funktionen aufeinander treffen, wenn ich eine zusammengesetzte Funktion habe.
z.B. bei der Betragsfunktion:
[mm] f(x)=\begin{cases} x, & \textbf{für} x\ge 0 \\ -x, & \textbf{für} x<0\end{cases}
[/mm]
x stetige Funktion, -x stetige Funktion, beide Funktionen stoßen aufeinander bei 0.
Linkseitiger Limes: [mm] \lim_{x\to 0} |x|=\lim_{x\to 0} [/mm] -x=0
Rechtsseitiger Limes: [mm] \lim_{x\to 0} |x|=\lim_{x\to 0} [/mm] x=0
f(0)=0
Da die drei Werte überein stimmen, ist f(x)=|x| in x=0 stetig, also insgesamt auf ganz [mm] \IR [/mm] stetig.
Gruß
Fry
|
|
|
|
|
Also bei meiner Aufgabe reicht die Untersuchung von z=0?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:16 Di 08.12.2009 | Autor: | Fry |
Ja, genau !
|
|
|
|