www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 05:07 Do 07.06.2012
Autor: mathemaus2010

Aufgabe
Was ist der maximale Definitionsbereich Df [mm] \subset [/mm] R der folgenden Funktionen? Untersuchen Sie diese auf Stetigkeit in Df . Die Benutzung des Satzes aus der VL über die “Rechenregeln” stetiger Funktionen ist nicht erlaubt.

a) f(x)= 2- [mm] \bruch{x}{|x|} [/mm]

b) f(x) = [mm] \bruch{x^{3}-1}{x-1} [/mm]

c) f(x) = [mm] \begin{cases} x, & \mbox{für } x \in Q \\ x+x^{2}, & \mbox{für } x \in R \backslash Q \end{cases} [/mm]

Hallo =),

ich stelle mich mal wieder extrem dumm an =(. Ich sitze seit über 5 Stunden an den Aufgaben und kann nicht eine lösen.

Ich habe mir zwar die ganzen Definitionen von stetigen Funktionen angeguckt, aber kann sie einfach nicht anwenden. Ich wüsste auch gar nicht, welches Kriterium ich auf welche der Funktionen anwenden kann.

Ich hoffe mir kann jemand helfen.

Dankeschön =)

        
Bezug
Stetigkeit: Definitionsbereiche
Status: (Antwort) fertig Status 
Datum: 10:03 Do 07.06.2012
Autor: Helbig

Was hast Du denn bis jetzt herausgefunden? Ich denke, die maximalen Definitionsbereiche sollten schon ergründbar sein.

Und dann kannst Du ja mal die Graphen der Funktionen skizzieren und schauen, wo sie in den jeweiligen Definitionsbereichen keine Sprünge machen. Dort sind sie stetig.

Und das solltest Du dann mit der [mm] $\epsilon$-$\delta$ [/mm] Definition nachweisen.

Also, wenn Du zeigen willst, daß die Funktion an der Stelle [mm] $x_0$ [/mm] stetig ist, mußt Du zu einem beliebig vorgegebenen [mm] $\epsilon [/mm] > 0$ ein [mm] $\delta$ [/mm] angegeben, so daß für alle
[mm] $\,x$ [/mm] im Definitionsbereich mit [mm] $|x-x_0| [/mm] < [mm] \delta$, [/mm] die also "genügend nahe bei [mm] $x_0$" [/mm] liegen, auch die Funktionswerte [mm] $\,f(x)$ [/mm] "beliebig nahe bei [mm] $f(x_0)$" [/mm] liegen, d. h. [mm] $|f(x)-f(x_0)| [/mm] < [mm] \epsilon$ [/mm] erfüllt ist.

Viel Erfolg,
Wolfgang

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:53 Sa 09.06.2012
Autor: mathemaus2010

Das mit dem Definitionsbereich ist leicht. Gezeichnet habe ich sie auch, aber mein Problem ist halt, dass die die Definition nicht anwenden kann. Das ist ja mein Problem. Und ich zeige ja auch nur, dass es in einem Punkt stetig ist, aber ich muss das ja für alle Punkte zeigen und das weiß ich auch nicht, wie man das machen soll.

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Sa 09.06.2012
Autor: Helbig

Gut, dann beantworte doch mal für

[mm] $f(x)=2-\frac [/mm] x {|x|}$

die folgenden Fragen, damit ich sehe, wo ich helfen kann:

Für welche $x$ ist $f(x)$ definiert, für welche $x$ ist $f(x)$ nicht definiert?

Wie kann man $f(x)$ einfacher darstellen? Der Betrag in der Formel führt zu einer Fallunterscheidung. Was ist z. B. $f(1)$ und $f(-1)$ oder $f(1000)$ und $f(-1000)$?

Und jetzt versuche mal, die Definition der Stetigkeit inhaltlich zu verstehen. Nimm irgendein [mm] $x_0$ [/mm] aus dem Definitionsbereich. Wie weit darf ein $x$ aus dem Definitionsbereich von [mm] $x_0$ [/mm] entfernt sein, so daß [mm] $|f(x)-f(x_0)| [/mm] < [mm] \epsilon$ [/mm] für ein beliebiges [mm] $\epsilon [/mm] > 0$?

Viel Erfolg,
Wolfgang



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]