www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikStetigkeit, Magnetfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Elektrotechnik" - Stetigkeit, Magnetfeld
Stetigkeit, Magnetfeld < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Magnetfeld: Hilfestellung, Tipp, Idee
Status: (Frage) überfällig Status 
Datum: 10:14 Fr 25.06.2010
Autor: Marcel08

Aufgabe
Gegeben ist ein in z-Richtung sehr langer, hochpermeabler, nichtleitender Körper [mm] (\mu\to\infty,\kappa=0), [/mm] der mit einer parallelflankigen und in positiver y-Richtung offenen Nut versehen ist. Auf dem Nutgrund befindet sich ein homogener massiver Leiterstab der Länge l mit rechteckigem Querschnitt (Höhe d, Breite 2a) der Leitfähigkeit [mm] \kappa, [/mm] der von einem z-gerichteten Wechselstrom [mm] i(t)=\hat{i}_{0}cos(\omega{t}) [/mm] durchflossen wird.

a) Stellen sie die HELHOLTZ-Gleichung für die magnetische Feldstärke unter Einbeziehung der quasistatischen Näherung auf.

b) Wie lauten die Rand- und Stetigkeitsbedingungen?

Hallo!




zu Aufgabenteil a)



Die Herleitung der HELMHOLTZ-Gleichung ist zunächst klar. Ich erhalte diesbezüglich


[mm] \Delta\underline{\vec{H}}=\underbrace{j\omega\kappa\mu}_{=p^{2}}\underline{\vec{H}} [/mm] und [mm] p=\bruch{j+1}{\wurzel{2}}\wurzel{\omega\kappa\mu\underline{\vec{H}}} [/mm]



Jetzt geht es um die zu treffenden Vereinfachungen. Aufgrund der vorliegenden geometrischen Anordnung erhalte ich wegen [mm] \bruch{\partial}{\partial{x}}=\bruch{\partial}{\partial{z}}=0 [/mm] den Betrag der magnetischen Feldstärke [mm] \underline{H} [/mm] in Abhängigkeit von y zu [mm] \underline{H}=\underline{H}(y) [/mm]




zu Aufgabenteil b)



In der Musterlösung steht folgendes: "An den Nutflanken und am Nutgrund muss die Tangentialkomponente der magnetischen Feldstärke identisch verschwinden:


(1) [mm] \underline{H}(0)=0 [/mm]




Frage zu a)



1.) Wie erkennt man, dass die magnetische Feldstärke ausschließlich in x-Richtung zeigt und nicht etwa in die Richtungen x und y? Ist das möglicherweise auf die hochpermeable Wand zurückzuführen?




Frage zu b)



1.) Wieso gilt Gleichung (1) am Nutgrund? Dort muss doch vielmehr die Tangentialkomponente an der Grenzfläche zwischen leitendem und nichtleitendem Teilgebiet stetig sein gemäß


[mm] \limes_{\delta\rightarrow\ 0}\underline{H}_{x}(x=0-\delta,y)=\limes_{\delta\rightarrow\ 0}\underline{H}_{x}(x=0+\delta,y) [/mm]



2.) Wie kann man aus Gleichung (1) Setigkeitsinformationen bezüglich der Flanken herauslesen? Muss man dazu nicht eine weitere Gleichung aufstellen? In Gleichung (1) hat man y=0 gesetzt, allerdings brauche ich doch auch eine x-Koordinate, oder sehe ich das falsch?




Vielen Dank!





Gruß, Marcel

        
Bezug
Stetigkeit, Magnetfeld: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 So 27.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]