Stetigkeit Produktmetrik < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | (X,d) ist metrischer Raum.
Definiere [mm] d^{(2)}(x,y)=d^{(2)}((x_{1},x_{2}),(y_{1},y_{2}))=2^{-k}(\frac{d_{1}(x_{1},y_{1})}{1+d_{1}(x_{1},y_{1})}+\frac{d_{2}(x_{2},y_{2})}{1+d_{2}(x_{2},y_{2})})\,\,\,\, x_{1},y_{1}\in X_{1},x_{2},y_{2}\in X_{2}.
[/mm]
Nun soll man zeigen, dass die Abbildung [mm] (x,y)\mapsto [/mm] d(x,y) von [mm] X\times [/mm] X versehen mit [mm] d^{(2)} [/mm] nach [mm] \mathbb{R} [/mm] stetig ist. |
Hallo,
ich weiß bei der obigen Aufgabe keinen Anfang. Ich hatte bei dem Beweis an das Folgenkriterium gedacht. Ist es sinnvoll, das damit zu beweisen? Und wenn ja, wie definiere ich mir da die Folge?
Oder muss man da mit [mm] \varepsilon [/mm] - [mm] \delta [/mm] vorgehen?
Dann müsste ich mir ein [mm] \delta [/mm] konstruieren, womit ich auch wieder Probleme habe.
|
|
|
|
Nochmal konkreter:
Ich habe mir eine Folge definiert: Sei [mm] ((x_{n},y_{n}))_{n\in\mathbb{N}} [/mm] bel. Folge mit [mm] \underset{n\rightarrow\infty}{\mbox{lim}}(x_{n},y_{n})=(x,y).
[/mm]
Dann muss ich zeigen, dass [mm] \underset{n\rightarrow\infty}{\mbox{lim}}d^{(2)}(x_{n},y_{n})=d^{(2)}(x,y).
[/mm]
Dabei werde ich wohl irgendwie die Eigenschaften der Metrik ausnutzen müssen. Ich weiß bloß nicht wie???
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:49 Fr 08.05.2009 | Autor: | felixf |
Hallo!
> Nochmal konkreter:
>
> Ich habe mir eine Folge definiert: Sei
> [mm]((x_{n},y_{n}))_{n\in\mathbb{N}}[/mm] bel. Folge mit
> [mm]\underset{n\rightarrow\infty}{\mbox{lim}}(x_{n},y_{n})=(x,y).[/mm]
``definiert'' wuerde ich das nicht nennen, eher ``genommen''.
Das [mm] $\lim_{n\to\infty} (x_n, y_n) [/mm] = (x, y)$ ist heisst uebriges gerade [mm] $\lim_{n\to\infty} d^{(2)}((x_n, y_n), [/mm] (x, y)) = 0$.
> Dann muss ich zeigen, dass
> [mm]\underset{n\rightarrow\infty}{\mbox{lim}}d^{(2)}(x_{n},y_{n})=d^{(2)}(x,y).[/mm]
Nein, das musst du nicht. Mal davon abgesehen, dass du in [mm] $d^{(2)}$ [/mm] hier Elemente aus $X [mm] \times [/mm] X$ einsetzt, und nicht aus $(X [mm] \times [/mm] X) [mm] \times [/mm] (X [mm] \times [/mm] X)$.
Du musst zeigen [mm] $\lim_{n\to\infty} d(x_n, y_n) [/mm] = d(x, y)$, oder alternativ, [mm] $\lim_{n\to\infty} |d(x_n, y_n) [/mm] - d(x, y)| = 0$.
Jetzt ist aber $d(x, y) [mm] \le [/mm] d(x, [mm] x_n) [/mm] + [mm] d(x_n, y_n) [/mm] + [mm] d(y_n, [/mm] y)$ und [mm] $d(x_n, y_n) \le [/mm] d(x, [mm] x_n) [/mm] + d(x, y) + d(y, [mm] y_n)$; [/mm] du bekommst also $-d(x, [mm] x_n) [/mm] + [mm] d(x_n, y_n) [/mm] - d(y, [mm] y_n) \le [/mm] d(x, y) [mm] \le [/mm] d(x, [mm] x_n) [/mm] + [mm] d(x_n, y_n) [/mm] + [mm] d(y_n, [/mm] y)$. Wenn du also [mm] $\lim_{n\to\infty} [/mm] d(x, [mm] x_n) [/mm] = 0 = [mm] \lim_{n\to\infty} [/mm] d(y, [mm] y_n)$ [/mm] zeigen kannst, folgt [mm] $\lim_{n\to\infty} |d(x_n, y_n) [/mm] - d(x, y)| = 0$ mit dem Sandwich-Lemma.
Um [mm] $\lim_{n\to\infty} [/mm] d(x, [mm] x_n) [/mm] = 0 = [mm] \lim_{n\to\infty} [/mm] d(y, [mm] y_n)$ [/mm] zu zeigen brauchst du jetzt [mm] $\lim_{n\to\infty} d^{(2)}((x_n, y_n), [/mm] (x, y)) = 0$. Folgere daraus doch zuerst, dass [mm] $\lim_{n\to\infty} \frac{d(x, x_n)}{1 + d(x, x_n)} [/mm] = 0$ sein muss und ebenso [mm] $\lim_{n\to\infty} \frac{d(y, y_n)}{1 + d(y, y_n)} [/mm] = 0$. Daraus bekommst du dann die anderen Grenzwerte.
LG Felix
|
|
|
|