www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit/Restriktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit/Restriktion
Stetigkeit/Restriktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit/Restriktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 24.04.2009
Autor: SusanneK

Aufgabe
Seien [mm] A_1 [/mm] und [mm] A_2 [/mm] zwei abgeschlossene, nichtleere Teilmengen von [mm] \IR^2 [/mm] und [mm] \IR^2=A_1 \cup A_2 [/mm]. Sei weiter [mm] f: \IR^2 \to \IR [/mm] eine Funktion, so dass dann [mm] f|_A_1 [/mm] und  [mm] f|_A_2 [/mm] stetig sind.
Zeigen Sie, dass f stetig ist.

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
wenn f auf [mm] A_1 [/mm] stetig ist, dann ist f in jedem Punkt von [mm] A_1 [/mm] stetig.
Das Gleiche gilt für [mm] A_2. [/mm]
Also kann es doch nur um die Randpunkte gehen, für die ich Stetigkeit zeigen soll - oder ?
Aber dabei verstehe ich nicht, wie aus der Vereinigung von 2 abgeschlossenen Räumen der offene Raum [mm] \IR^2 [/mm] entstehen soll.
Was mache ich falsch ?

Danke, Susanne.


        
Bezug
Stetigkeit/Restriktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Fr 24.04.2009
Autor: Gonozal_IX

Hallo Susanne,

ich würde es am ehesten über einen Indirekten Beweis versuchen.

Sei f nicht stetig, dann gibt es x [mm] \in \IR^2, [/mm] so dass......
Da aber [mm] \IR^2 [/mm] = [mm] A_1 \cup A_2 [/mm] gilt x [mm] \in [/mm] ....
Und damit .....

Naja, den Rest bekommst du schon hin :-)

>  Aber dabei verstehe ich nicht, wie aus der Vereinigung von
> 2 abgeschlossenen Räumen der offene Raum [mm]\IR^2[/mm] entstehen
> soll.

Naja, triviales Beispiel: [mm] A_1 [/mm] = [mm] A_2 [/mm] = [mm] \IR^2 [/mm] erfüllt alle Bedingungen.

MfG,
Gono.


Bezug
                
Bezug
Stetigkeit/Restriktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Fr 24.04.2009
Autor: SusanneK

Hallo Gono,
vielen Dank für deine Hilfe !

> ich würde es am ehesten über einen Indirekten Beweis
> versuchen.
>  
> Sei f nicht stetig, dann gibt es x [mm]\in \IR^2,[/mm] so
> dass......
>  Da aber [mm]\IR^2[/mm] = [mm]A_1 \cup A_2[/mm] gilt x [mm]\in[/mm] ....
>  Und damit .....
>  
> Naja, den Rest bekommst du schon hin :-)
>  

Danke für den Tipp !!

> >  Aber dabei verstehe ich nicht, wie aus der Vereinigung von

> > 2 abgeschlossenen Räumen der offene Raum [mm]\IR^2[/mm] entstehen
> > soll.
>  
> Naja, triviales Beispiel: [mm]A_1[/mm] = [mm]A_2[/mm] = [mm]\IR^2[/mm] erfüllt alle
> Bedingungen.

Auweia, darauf hätte ich auch kommen können, aber ich dachte, ich würde das Ganze komplett falsch verstehen - wäre auch nicht das erste Mal gewesen ;-)

LG und vielen Dank, Susanne.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]