www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieStetigkeit des Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Stetigkeit des Integrals
Stetigkeit des Integrals < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit des Integrals: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:47 Do 24.11.2011
Autor: shadee

Aufgabe
Sei [mm] (S,\mathcal{F},\mu) [/mm] ein Maßraum unf f integrierbar. Zeige, dass es zu jedem [mm] \epsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 gibt, so dass | [mm] \integral_{A}^{}{f d\mu} [/mm] | [mm] \le \epsilon [/mm] für jedes A [mm] \in \mathcal{F} [/mm] mit [mm] \mu(A) \le \delta. [/mm]

| [mm] \integral_{A}^{}{f d\mu} [/mm] | ist ja definiert als | [mm] \integral_{A}^{}{f*\chi_{A} d\mu} [/mm] |, wobei [mm] \chi_{A} [/mm] die charakteristische Funktion auf Mengen ist und [mm] \chi_{A} [/mm] = [mm] \mu(A). [/mm] Jetzt kann ich ja die Hölder-Ungleichung anwenden und sage | [mm] \integral_{A}^{}{|f*\chi_{A}|^{p} d\mu} |^{\frac{1}{p}} \le [/mm] | [mm] \integral_{A}^{}{|f|^{p} d\mu}|^{\frac{1}{p}} [/mm]  * | [mm] \integral_{A}^{}{|\chi_{A}|^{q} d\mu} |^{\frac{1}{q}}. [/mm] Damit wäre also mein [mm] \epsilon [/mm] definiert. Mein [mm] \delta [/mm] wäre aber auch festgelegt. Jetzt weiß ich aber nicht, ob ich fertig bin. Da ich iwie gar nix gezeigt habe. Muss ich jez noch zeigen, dass beides größer 0 ist. Und das die Abschätzungen gelten für alle Mengen A?

Eine konrete Aufgabe dazu wäre  | [mm] \integral_{B_{r}(0)}^{}{f d\lambda^{k}} [/mm] | [mm] \le \epsilon [/mm] für r [mm] \le \delta. [/mm]

Danke für alle Hinweise. Gruß shadee

        
Bezug
Stetigkeit des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Fr 25.11.2011
Autor: fred97


> Sei [mm](S,\mathcal{F},\mu)[/mm] ein Maßraum unf f integrierbar.
> Zeige, dass es zu jedem [mm]\epsilon[/mm] > 0 ein [mm]\delta[/mm] > 0 gibt,
> so dass | [mm]\integral_{A}^{}{f d\mu}[/mm] | [mm]\le \epsilon[/mm] für
> jedes A [mm]\in \mathcal{F}[/mm] mit [mm]\mu(A) \le \delta.[/mm]
>  |
> [mm]\integral_{A}^{}{f d\mu}[/mm] | ist ja definiert als |
> [mm]\integral_{A}^{}{f*\chi_{A} d\mu}[/mm] |,


Du meinst wohl  [mm]\integral_{S}^{}{f*\chi_{A} d\mu}[/mm] |,



>  wobei [mm]\chi_{A}[/mm] die
> charakteristische Funktion auf Mengen ist und [mm]\chi_{A}[/mm] =
> [mm]\mu(A).[/mm] Jetzt kann ich ja die Hölder-Ungleichung anwenden
> und sage | [mm]\integral_{A}^{}{|f*\chi_{A}|^{p} d\mu} |^{\frac{1}{p}} \le[/mm]
> | [mm]\integral_{A}^{}{|f|^{p} d\mu}|^{\frac{1}{p}}[/mm]  * |
> [mm]\integral_{A}^{}{|\chi_{A}|^{q} d\mu} |^{\frac{1}{q}}.[/mm]
> Damit wäre also mein [mm]\epsilon[/mm] definiert.


Das ist doch Blödsinn !! Du sollst zeigen: zu jedem [mm]\epsilon[/mm] >0 gibt es ein [mm] \delta> [/mm] 0 mit .....

Also mußt Du folgendes machen: gib ein [mm]\epsilon[/mm] >0  vor und kitzle irgendwie ein [mm] \delta [/mm] >0 heraus, welches die Gewünschte Eigenschaft hat.



>  Mein [mm]\delta[/mm] wäre
> aber auch festgelegt. Jetzt weiß ich aber nicht, ob ich
> fertig bin.

Noch lange nicht !

> Da ich iwie gar nix gezeigt habe.

So ist es.



FRED


>  Muss ich jez
> noch zeigen, dass beides größer 0 ist. Und das die
> Abschätzungen gelten für alle Mengen A?
>
> Eine konrete Aufgabe dazu wäre  |
> [mm]\integral_{B_{r}(0)}^{}{f d\lambda^{k}}[/mm] | [mm]\le \epsilon[/mm] für
> r [mm]\le \delta.[/mm]
>
> Danke für alle Hinweise. Gruß shadee


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]