www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Aufgabe vom Übungszettel
Status: (Frage) beantwortet Status 
Datum: 20:44 Mi 10.01.2007
Autor: Monsterzicke

Aufgabe
Zeige, dass die Funktion f: IC-->IR, f(z)= max(1-/z/,0) stetig ist.

Hallo ihr Lieben!
Bei dieser Aufgabe habe ich den Tipp bekommen, alles erstmal mit der Verknüpfung von stetigen Funktionen anzugehen, habe aber leider keinen blassen Schimmer, wie ich das anwenden soll.
Es wäre schön, wenn mir jemand helfen könnte!
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mi 10.01.2007
Autor: Leopold_Gast

Stelle dir zwei reelle Zahlen [mm]u,v[/mm] auf dem Zahlenstrahl vor. Dann ist [mm]\frac{1}{2} \left( u + v \right)[/mm] ihre Mitte. Wenn du jetzt zu dieser Mitte den halben Abstand der Zahlen - das ist [mm]\frac{1}{2} \left| u - v \right|[/mm] - dazuzählst, erhältst du die größere der beiden Zahlen. Um es kurz zu sagen:

[mm]\max \{ u , v \} = \frac{1}{2} \left( u + v \right) + \frac{1}{2} \left| u - v \right| = \frac{1}{2} \left( u + v + \left| u - v \right| \right)[/mm]

Und hier kannst du jetzt speziell [mm]u = 1 - |z| \, , \ v = 0[/mm] einsetzen.

Bezug
                
Bezug
Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Do 11.01.2007
Autor: Monsterzicke

Erstmal danke, danke, danke!!!
Habe ich gemacht, aber dann bin ich doch noch nicht fertig oder?
(Sorry, wenn ich doofe Fragen stelle, aber ich verstehe das Thema noch nicht so ganz...)

Bezug
                        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 11.01.2007
Autor: Leopold_Gast

Eigentlich mußt du nur zeigen, daß die Betragsfunktion und die Funktion konstant 1 stetig sind (bzw. darauf verweisen, wenn das klar ist). Da sich die hier vorliegende Funktion allein durch die Prozesse Addition (Subtraktion) und Verkettung aus diesen beiden Funktionen erzeugen läßt, Stetigkeit aber bei diesen Prozessen erhalten bleibt, ist die gesamte Funktion stetig.

Bezug
                                
Bezug
Stetigkeit einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:49 Fr 12.01.2007
Autor: Monsterzicke

Oh mein Gott, woher kannst du das nur?
Gut erklärt, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]