www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:23 Di 26.05.2009
Autor: fmath

Aufgabe
Es sei f: [mm] \IR \to \IR, [/mm] sodass

f(x) :=  [mm] f(n)=\begin{cases} e^{1/ (x^{2}-1)}, & \mbox{falls } x \in (-1,1) \\ 0, & \mbox{sonst } \end{cases} [/mm]

a) Zeigen Sie, dass f stetig auf [mm] \IR [/mm] ist.
b) Zeichnen Sie den Graph von f.
c) Zeigen Sie Mithilfe einer Induktion, dass es ein Polynom [mm] P_{n} [/mm] gibt, sodass

[mm] f^{(n)}(x) [/mm] = [mm] \left(\bruch{P_{n}(x)}{(1-x^{2})^{2n}} \right)*exp \left(\bruch{1}{x^{2}-1} \right) [/mm]

gilt, für alle x [mm] \in [/mm] (−1, 1) und n [mm] \in \IN. [/mm] Hier bedeutet [mm] f^{(n)} [/mm] die n-te Ableitung von f.
(Tipp: Es ist nicht erforderlich, eine Formel für [mm] P_{n} [/mm] anzugeben!)

d) Wir erinnern uns, dass die linke (bzw. rechte) Ableitung einer Funktion g in a gegeben ist
durch [mm] \lim_{x \to a} [/mm] (g(x) − g(a))/(x − a), wobei x > a (bzw. x < a). Der Limes heißt [mm] g_{1}'(a) [/mm] (bzw. [mm] g_{r}'(a)). [/mm] Wenn  [mm] g_{1}'(a) [/mm] und [mm] g_{r}'(a) [/mm] existieren und gleich sind dann existiert g′(a). Mithilfe einer
Induktion beweisen Sie auf diese Weise, dass [mm] f^{(n)}(1) [/mm] existiert, für alle n [mm] \in \IN. [/mm]

e) Ist f reell-analytisch?

Hallo Miteinander,

Ich habe folgende Aufgabe, die ich lösen muss, aber leider komme nicht weiter. Kann mir jemand bitte helfen?
Ich habe versucht die links und rechtseitige Limes jeweils mit -1 und 1 wie es gegeben war zu berechen und weiss nicht ob es so richtig ist. Bitte um Erklärung

Danke im voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Di 26.05.2009
Autor: leduart

Hallo fmath und

           [willkommenmr]

Das sind ne Menge Teilaufgaben. Hast du alle bis d)? und bezieht sich deine frage darauf?
Du sagst du hast was versucht, das solltest du hier zeigen, und wir stimmen zu, ergaenzen oder helfen, aber wir liefern nicht einfach Loesungen.  Ich hoffe du hast die Forenregeln gelesen.
Gruss leduart

Bezug
                
Bezug
Stetigkeit einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Mi 27.05.2009
Autor: fmath

Meine Frage bezieht sich auf a) und zwar:
Nach Def.: Eine Funktion ist stetig wenn;
[mm] \lim_{x \to x_{0}^{-}}f(x)= \lim_{x \to x_{0}^{+}}f(x)=f(x_{0}). [/mm]

Somit ist:

[mm] f(x_{0})=f(-1)= [/mm] exp
[mm] f(x_{0})= [/mm] f(1)= exp  und

[mm] \lim_{x \to -1^{-}}f(x)=? \lim_{x \to -1^{+}}f(x) [/mm]

             [mm] =\lim_{x \to -1^{-}}exp(\bruch{1}{x^{2}-1}) [/mm]
             [mm] =\lim_{x \to -1^{-}}exp(\bruch{1}{1-1}) [/mm]
             [mm] =\lim_{x \to -1^{-}}exp(\bruch{1}{0}) [/mm]
             [mm] =\lim_{x \to -1^{-}}exp^{\infty} [/mm] = [mm] \infty [/mm]
und
[mm] \lim_{x \to -1^{+}}f(x)=\infty [/mm]

und das gleiche habe ich auch für x=1 da x [mm] \in [/mm] (-1,1)
und erhalte:

[mm] \lim_{x \to 1^{-}}f(x)=\lim_{x \to 1^{+}}f(x)=\infty [/mm]

Da aber
f(-1) [mm] \not= \lim_{x \to -1^{-}}f(x) \not= \lim_{x \to -1^{+}}f(x) [/mm]

und

f(1) [mm] \not= \lim_{x \to 1^{-}}f(x) \not= \lim_{x \to 1^{+}}f(x) [/mm]

kann ich sagen, dass die Funktion nicht stetig ist.
Nur weiss ich nicht ob ich damit auf den richtigen Weg bin diese Stetigkeit zu zeigen.
Bin noch bei der d)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]