www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 10:59 Mo 14.05.2012
Autor: j3ssi

Aufgabe
Zeigen Sie, dass die durch $ [mm] f(x)=f(n)=\begin{cases} \frac{1}{q}, & x \in \IQ \backslash \{ 0 \} \\ 1, & x=0 \\ 0, & x \in \IR \backslash \IQ \end{cases}$ [/mm]
definierte Funktion  $f: [mm] \IR \to \IR [/mm] $ in allen Punkten $x [mm] \in \IR \backslash \IQ$ [/mm] stetig und in allen Punkten $x [mm] \in \IQ$ [/mm]  unstetig ist.


Brauche grade ne Idee wie ich zeige, das Stetigkeit in den $x [mm] \in \IR \backslash \IQ$ [/mm] gilt. Bisher habe ich: Stetigkeit in  $x : [mm] \forall \epsilon [/mm] >0 [mm] \exists \delta [/mm] >0 [mm] \text{ mit }: |f(a)-f(x)|=|f(a)|<\eposilon, \forall |a-x|<\delta$. [/mm] Kann das a in diesem Fall auch ausserhalb von [mm] $\IR \backslash \IQ [/mm] $ sein? Und wie beweise ich dem Fall das es stetig ist. Vorallen kann für diesen Beweis angenommen werden, dass auch $x [mm] \in \IR \backslash \IQ$ [/mm] ist ?


        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mo 14.05.2012
Autor: Schadowmaster

moin,

Zuerst solltest du die vollständige Funktion angeben.
Ich nehme mal an für $x [mm] \in \IQ$ [/mm] soll das so aussehen:
Für $x [mm] \in \IQ$ [/mm] mit $x = [mm] \frac{p}{q}$, [/mm] $p [mm] \in \IZ, [/mm] q [mm] \in \IN$, [/mm] ggT$(p,q) = 1$ ist $f(x) = [mm] \frac{1}{q}$. [/mm]
Also das $x$ wird vollständig gekürzt und das $p$ wird zu einer 1.
Stimmt das soweit?

Für die Unstetigkeit in [mm] $\IQ \backslash \{0\}$ [/mm] wähle dir mal für [mm] $x_0 [/mm] = [mm] \frac{p}{q}$ [/mm] gekürzt wie oben [mm] $\epsilon [/mm] = [mm] \frac{1}{2p} [/mm] > 0$ und überlege dir, wieso du dazu kein [mm] $\delta$ [/mm] finden kannst (eine Skizze könnte ggf. helfen).

Für die Stetigkeit in [mm] $\IR \backslash \IQ$ [/mm] (da steht in der Aufgabe übrigens, dass die dort auch unstetig sein soll, sie ist aber stetig - editiere das bitte nochmal kurz) würde ich das Folgenkriterium empfehlen.
Haben wir eine Folge [mm] $(a_n)$ [/mm] mit [mm] $\limes_{n \to \infty} a_n [/mm] = [mm] x_0 \in \IR \backslash \IQ$, [/mm] wieso ist dann [mm] $\limes_{n \to \infty} f(a_n) [/mm] = [mm] f(x_0) [/mm] = 0$ ?

Sollte es sonst noch Fragen geben oder die Aufgabe doch anders gemeint sein als ich das reininterpretiert habe sag Bescheid.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]