www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer reellen Fkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Stetigkeit einer reellen Fkt
Stetigkeit einer reellen Fkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer reellen Fkt: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:59 Do 15.12.2011
Autor: kullinarisch

Aufgabe
Finde die Stetigkeits- und Unstetigkeitsstellen folgender Funktion:

(iii) [mm] \alpha: \IR \to \IR, \alpha(x) [/mm] = [mm] {\lfloor x + \bruch{1}{2}\quad \rfloor} [/mm]

Hallo, habe eine weitere Funktion auf Stetigkeit untersucht.

Stetigkeit

Vor: [mm] x_0 \in [/mm] (p + 0,5, p + 1,5) p [mm] \in \IZ, x_0 \in \IR [/mm]
Beh: [mm] \alpha [/mm] ist stetig in [mm] x_0 [/mm]
Bew: Folgenkriterium:

Es gilt [mm] \alpha(x_0) [/mm] = [mm] {\lfloor x_0 + \bruch{1}{2}\quad \rfloor} [/mm] = p + 1

Sei [mm] x_k [/mm] Folge in [mm] \IR [/mm] mit [mm] x_k \to x_0, [/mm] k [mm] \to \infty [/mm]
Da (p+0,5, p+1,5) die Umgebung von [mm] x_0 [/mm] ist [mm] \Rightarrow \exists k_1 \in \IN [/mm] s.d. für k [mm] \ge k_1, x_k \in [/mm] (p+0,5, p+1,5)
also [mm] \alpha(x_k) [/mm] = [mm] {\lfloor x_k + \bruch{1}{2}\quad \rfloor} [/mm] p + 1
[mm] \Rightarrow \limes_{k\rightarrow\infty} \alpha(x_k) [/mm] = p + 1

also [mm] x_0 [/mm] stetig [mm] \Box [/mm]

Unstetigkeit

Vor: [mm] x_0 [/mm] = p - 0,5, p [mm] \in \IZ [/mm] bel.
Beh: [mm] \alpha [/mm] ist unstetig in [mm] x_0 [/mm]
Bew: Folgenkriterium:

es ist [mm] \alpha(x_0) [/mm] = [mm] {\lfloor x_0 + \bruch{1}{2}\quad \rfloor} [/mm] = [mm] {\lfloor p-0,5 + \bruch{1}{2}\quad \rfloor} [/mm] = p

Sei [mm] (x_k) [/mm] Folge Folge in [mm] \IQ [/mm] mit [mm] x_k [/mm] = p -0,5 - [mm] \bruch{1}{k} [/mm] und [mm] \limes_{k\rightarrow\infty} x_k [/mm] = [mm] x_0 [/mm] = p -0,5
Aber [mm] \alpha(x_k) [/mm] = p und [mm] \limes_{k\rightarrow\infty} x_k [/mm] = [mm] \limes_{k\rightarrow\infty} {\lfloor x + \bruch{1}{2}\quad \rfloor} [/mm] = p - 1 [mm] \not= [/mm] p = [mm] \alpha(x_0) [/mm]

also [mm] x_0 [/mm] unstetig [mm] \Box [/mm]

Wäre wirklich super, wenn sich jmd die Mühe machen würde, da mal drüber zu schauen :)

LG, kullinarisch

        
Bezug
Stetigkeit einer reellen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 15.12.2011
Autor: fred97


> Finde die Stetigkeits- und Unstetigkeitsstellen folgender
> Funktion:
>
> (iii) [mm]\alpha: \IR \to \IR, \alpha(x)[/mm] = [mm]{\lfloor x + \bruch{1}{2}\quad \rfloor}[/mm]
>  
> Hallo, habe eine weitere Funktion auf Stetigkeit
> untersucht.
>  
> Stetigkeit
>  
> Vor: [mm]x_0 \in[/mm] (p + 0,5, p + 1,5) p [mm]\in \IZ, x_0 \in \IR[/mm]
>  
> Beh: [mm]\alpha[/mm] ist stetig in [mm]x_0[/mm]
> Bew: Folgenkriterium:
>
> Es gilt [mm]\alpha(x_0)[/mm] = [mm]{\lfloor x_0 + \bruch{1}{2}\quad \rfloor}[/mm]
> = p + 1
>  
> Sei [mm]x_k[/mm] Folge in [mm]\IR[/mm] mit [mm]x_k \to x_0,[/mm] k [mm]\to \infty[/mm]
>  Da
> (p+0,5, p+1,5) die Umgebung von [mm]x_0[/mm] ist [mm]\Rightarrow \exists k_1 \in \IN[/mm]
> s.d. für k [mm]\ge k_1, x_k \in[/mm] (p+0,5, p+1,5)
>  also [mm]\alpha(x_k)[/mm] = [mm]{\lfloor x_k + \bruch{1}{2}\quad \rfloor}[/mm]
> p + 1
>  [mm]\Rightarrow \limes_{k\rightarrow\infty} \alpha(x_k)[/mm] = p +
> 1
>  
> also [mm]x_0[/mm] stetig [mm]\Box[/mm]
>  
> Unstetigkeit
>  
> Vor: [mm]x_0[/mm] = p - 0,5, p [mm]\in \IZ[/mm] bel.
>  Beh: [mm]\alpha[/mm] ist unstetig in [mm]x_0[/mm]
>  Bew: Folgenkriterium:
>
> es ist [mm]\alpha(x_0)[/mm] = [mm]{\lfloor x_0 + \bruch{1}{2}\quad \rfloor}[/mm]
> = [mm]{\lfloor p-0,5 + \bruch{1}{2}\quad \rfloor}[/mm] = p
>  
> Sei [mm](x_k)[/mm] Folge Folge in [mm]\IQ[/mm] mit [mm]x_k[/mm] = p -0,5 -
> [mm]\bruch{1}{k}[/mm] und [mm]\limes_{k\rightarrow\infty} x_k[/mm] = [mm]x_0[/mm] = p
> -0,5
>  Aber [mm]\alpha(x_k)[/mm] = p und [mm]\limes_{k\rightarrow\infty} x_k[/mm] =
> [mm]\limes_{k\rightarrow\infty} {\lfloor x + \bruch{1}{2}\quad \rfloor}[/mm]
> = p - 1 [mm]\not=[/mm] p = [mm]\alpha(x_0)[/mm]
>  
> also [mm]x_0[/mm] unstetig [mm]\Box[/mm]
>  
> Wäre wirklich super, wenn sich jmd die Mühe machen
> würde, da mal drüber zu schauen :)

Sieht gut aus !

FRED

>  
> LG, kullinarisch


Bezug
                
Bezug
Stetigkeit einer reellen Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:43 Fr 16.12.2011
Autor: kullinarisch

Top, danke! :) Habe zwar gerade noch einige Tippfehler entdeckt, aber ich denke man erkennt was gemeint ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]