www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit im 0 Punkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit im 0 Punkt
Stetigkeit im 0 Punkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im 0 Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Mo 14.01.2013
Autor: Frosch20

Aufgabe
Die Funktion:

[mm] f(x)=\begin{cases} 0, & \mbox{für } x \mbox{aus R/Q} \\ x, & \mbox{für } x \mbox{aus Q} \end{cases} [/mm]

ist im 0 Pkt. stetig

Mein Ansatz war bislang der hier:

Es gibt eine Folge [mm] (x_n) [/mm] mit [mm] x_n\in \IQ [/mm] für alle [mm] n\in \N, [/mm] sodass

lim [mm] x_n=0, [/mm] und es gibt eine Folge [mm] y_n [/mm] in [mm] \IR [/mm] \ [mm] \IQ [/mm] sodass für alle natürlichen Zahlen lim [mm] y_n=0 [/mm] gilt.

Also gilt:

0=lim [mm] f(y_n)=lim f(x_n) [/mm] = 0

Also ist die Funktion im Nullpunkt stetig.

Darf man das so machen, bzw. ist das aussreichend ?

Wenn nicht, warum nicht ?
Wie soll ich vorgehen ?

Ein Ansatz wäre hilfreich,
vielen dank,
mfg. Lé Frog :)

        
Bezug
Stetigkeit im 0 Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 01:13 Mo 14.01.2013
Autor: Marcel

Hallo,

> Die Funktion:
>  
> [mm]f(x)=\begin{cases} 0, & \mbox{für } x \mbox{aus R/Q} \\ x, & \mbox{für } x \mbox{aus Q} \end{cases}[/mm]
>  
> ist im 0 Pkt. stetig
>  Mein Ansatz war bislang der hier:
>  
> Es gibt eine Folge [mm](x_n)[/mm] mit [mm]x_n\in \IQ[/mm] für alle [mm]n\in \N,[/mm]

Du meinst $n [mm] \in \IN$! [/mm] (Klick auf die Formel!)

> sodass
>  
> lim [mm]x_n=0,[/mm] und es gibt eine Folge [mm]y_n[/mm] in [mm]\IR[/mm] \ [mm]\IQ[/mm] sodass
> für alle natürlichen Zahlen

Du wolltest wohl "... alle natürlichen Zahlen [mm] $n\,$... [/mm] " schreiben, und dann
"... so dass:..."

> lim [mm]y_n=0[/mm] gilt.
>  
> Also gilt:
>  
> 0=lim [mm]f(y_n)=lim f(x_n)[/mm] = 0
>  
> Also ist die Funktion im Nullpunkt stetig.
>  
> Darf man das so machen, bzw. ist das aussreichend ?

Nein!

> Wenn nicht, warum nicht ?

Weil Du dabei nicht nur sagen darfst, "dass es eine Folge gibt". Sondern Du
musst sagen:
Ist [mm] $(x_n)_n$ [/mm] IRGENDEINE Folge in [mm] $\IQ$ [/mm] mit [mm] $\lim x_n=0\,,$ [/mm] so folgt [mm] $\lim f(x_n)=\lim 0=0\,,$ [/mm]
(das ist quasi trivial) und ist [mm] $(y_n)_n$ [/mm] IRGENDEINE Folge in [mm] $\IR \setminus \IQ\,$ [/mm] mit
[mm] $\lim y_n=0\,,$ [/mm] so folgt [mm] $\lim f(y_n)=0\,.$ [/mm] (Nebenbei: Warum folgt [mm] $\lim f(y_n)=0$ [/mm] denn eigentlich?)

(Anders gesagt: Ersetze jeweils das (rotmarkierte) "es gibt eine (Folge)"
durch "für alle (Folgen)" - und begründe dann Deine Behauptungen auch!)

Denn eigentlich musst Du zeigen: Für alle Folgen [mm] $(r_n)_n$ [/mm] in [mm] $\IR$ [/mm] mit [mm] $\lim r_n=0$ [/mm] folgt
[mm] $\lim f(r_n)=0\;\;\;(=f(0))\,,$ [/mm] aber das kannst Du mit obigen Zwischenschritten dann erledigen.

(Dazu nimmst Du nun IRGENDEINE Folge [mm] $(r_n)_{n \in \IN}$ [/mm] mit Werten in
[mm] $\IR$ [/mm] her, die zudem [mm] $\lim r_n=0$ [/mm] erfülle. (D.h. es werden die [mm] $r_n$ [/mm] nicht
konkretisiert als etwa [mm] $r_n=1/n^2\,,$ [/mm] denn das wäre schon wieder eine
SPEZIELLE reellwertige Nullfolge, sondern Du weißt und darfst im
Folgenden nur die Eigenschaften benutzen, dass [mm] $\IR \ni r_n \to [/mm] 0$ nach
Voraussetzung gilt!) Dann musst Du irgendwie [mm] $f(r_n) \to [/mm] 0=f(0)$ begründen.
Übrigens finde ich es hier am einfachsten, wenn Du das sogar einfach so
machst, also sagst:
"Gelte [mm] $\IR \ni r_n \to [/mm] 0$..."
und dann begründe, dass [mm] $|f(r_n)| \le |r_n|$ [/mm] gilt. Denn was folgt denn
insbesondere für die Folge [mm] $(|r_n|)_n\,,$ [/mm] wenn [mm] $\IR \ni r_n \to [/mm] 0$?)

Dass Dein obiges "es gibt" keinen Sinn macht, um die Aufgabe zu lösen,
zeigt das einfache Beispiel von
$$g [mm] \colon \IR \to \IR$$ [/mm]
definiert durch
[mm] $$g(x):=\begin{cases} 1, & \mbox{für } x \in \IQ \cap [0,\,\infty) \\ 0, & \mbox{für } x \in (\IR \setminus \IQ) \cap [0,\,\infty)\\0, & \mbox{für } x \in \IQ \cap (-\infty,\,0)\\1, & \mbox{für } x \in (\IR \setminus \IQ) \cap (-\infty,\,0) \end{cases}\,.$$ [/mm]

Diese Funktion ist unstetig in [mm] $x_0=0\,,$ [/mm] dennoch gibt es sowohl eine
Folge [mm] $(x_n)_n$ [/mm] in [mm] $\IQ$ [/mm] mit [mm] $\lim g(x_n)=\lim [/mm] 1=g(0)$ (bspw. [mm] $x_1=1/n$) [/mm]
und es gibt auch eine Folge [mm] $(y_n)_n$ [/mm] in [mm] $\IR \setminus \IQ$ [/mm] mit [mm] $\lim g(y_n)=\lim 1=g(0)\,$ [/mm]
(bspw. [mm] $y_n=-\sqrt{2}/n$). [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Stetigkeit im 0 Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:00 Mo 14.01.2013
Autor: Frosch20


> Hallo,
>  
> > Die Funktion:
>  >  
> > [mm]f(x)=\begin{cases} 0, & \mbox{für } x \mbox{aus R/Q} \\ x, & \mbox{für } x \mbox{aus Q} \end{cases}[/mm]
>  
> >  

> > ist im 0 Pkt. stetig
>  >  Mein Ansatz war bislang der hier:
>  >  
> > Es gibt eine Folge [mm](x_n)[/mm] mit [mm]x_n\in \IQ[/mm] für alle [mm]n\in \N,[/mm]
>  
> Du meinst [mm]n \in \IN[/mm]! (Klick auf die Formel!)
>  
> > sodass
>  >  
> > lim [mm]x_n=0,[/mm] und es gibt eine Folge [mm]y_n[/mm] in [mm]\IR[/mm] \ [mm]\IQ[/mm] sodass
> > für alle natürlichen Zahlen
>
> Du wolltest wohl "... alle natürlichen Zahlen [mm]n\,[/mm]... "
> schreiben, und dann
>  "... so dass:..."
>  
> > lim [mm]y_n=0[/mm] gilt.
>  >  
> > Also gilt:
>  >  
> > 0=lim [mm]f(y_n)=lim f(x_n)[/mm] = 0
>  >  
> > Also ist die Funktion im Nullpunkt stetig.
>  >  
> > Darf man das so machen, bzw. ist das aussreichend ?
>  
> Nein!
>  
> > Wenn nicht, warum nicht ?
>  
> Weil Du dabei nicht nur sagen darfst, "dass es eine Folge
> gibt". Sondern Du
>  musst sagen:
>  Ist [mm](x_n)_n[/mm] IRGENDEINE Folge in [mm]\IQ[/mm] mit [mm]\lim x_n=0\,,[/mm] so
> folgt [mm]\lim f(x_n)=\lim 0=0\,,[/mm]
> (das ist quasi trivial) und ist [mm](y_n)_n[/mm] IRGENDEINE Folge in
> [mm]\IR \setminus \IQ\,[/mm] mit
> [mm]\lim y_n=0\,,[/mm] so folgt [mm]\lim f(y_n)=0\,.[/mm] (Nebenbei: Warum
> folgt [mm]\lim f(y_n)=0[/mm] denn eigentlich?)
>  
> (Anders gesagt: Ersetze jeweils das (rotmarkierte) "es gibt
> eine (Folge)"
> durch "für alle (Folgen)" - und begründe dann Deine
> Behauptungen auch!)
>  
> Denn eigentlich musst Du zeigen: Für alle Folgen [mm](r_n)_n[/mm]
> in [mm]\IR[/mm] mit [mm]\lim r_n=0[/mm] folgt
> [mm]\lim f(r_n)=0\;\;\;(=f(0))\,,[/mm] aber das kannst Du mit obigen
> Zwischenschritten dann erledigen.
>  
> (Dazu nimmst Du nun IRGENDEINE Folge [mm](r_n)_{n \in \IN}[/mm] mit
> Werten in
>  [mm]\IR[/mm] her, die zudem [mm]\lim r_n=0[/mm] erfülle. (D.h. es werden
> die [mm]r_n[/mm] nicht
>  konkretisiert als etwa [mm]r_n=1/n^2\,,[/mm] denn das wäre schon
> wieder eine
> SPEZIELLE reellwertige Nullfolge, sondern Du weißt und
> darfst im
> Folgenden nur die Eigenschaften benutzen, dass [mm]\IR \ni r_n \to 0[/mm]
> nach
> Voraussetzung gilt!) Dann musst Du irgendwie [mm]f(r_n) \to 0=f(0)[/mm]
> begründen.

Ah okay, vielen dank.

> Übrigens finde ich es hier am einfachsten, wenn Du das
> sogar einfach so
> machst, also sagst:
>  "Gelte [mm]\IR \ni r_n \to 0[/mm]..."
>  und dann begründe, dass
> [mm]|f(r_n)| \le |r_n|[/mm] gilt. Denn was folgt denn
> insbesondere für die Folge [mm](|r_n|)_n\,,[/mm] wenn [mm]\IR \ni r_n \to 0[/mm]?)
>  

Also für die Filge [mm](|r_n|)_n\,,[/mm] folgt aus [mm]\IR \ni r_n \to 0[/mm]?) dass natürlich auch [mm](|r_n|)_n\,,[/mm] gegen 0 konvergiert. Mehr würde mir für die Folge jetz nicht einfallen.

> Dass Dein obiges "es gibt" keinen Sinn macht, um die
> Aufgabe zu lösen,
>  zeigt das einfache Beispiel von
> [mm]g \colon \IR \to \IR[/mm]
>  definiert durch
>  [mm]g(x):=\begin{cases} 1, & \mbox{für } x \in \IQ \cap [0,\,\infty) \\ 0, & \mbox{für } x \in (\IR \setminus \IQ) \cap [0,\,\infty)\\0, & \mbox{für } x \in \IQ \cap (-\infty,\,0)\\1, & \mbox{für } x \in (\IR \setminus \IQ) \cap (-\infty,\,0) \end{cases}\,.[/mm]
>  
> Diese Funktion ist unstetig in [mm]x_0=0\,,[/mm] dennoch gibt es
> sowohl eine
> Folge [mm](x_n)_n[/mm] in [mm]\IQ[/mm] mit [mm]\lim g(x_n)=\lim 1=g(0)[/mm] (bspw.
> [mm]x_1=1/n[/mm])
> und es gibt auch eine Folge [mm](y_n)_n[/mm] in [mm]\IR \setminus \IQ[/mm]
> mit [mm]\lim g(y_n)=\lim 1=g(0)\,[/mm]
> (bspw. [mm]y_n=-\sqrt{2}/n[/mm]).
>
> Gruß,
>    Marcel

Bezug
                        
Bezug
Stetigkeit im 0 Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mo 14.01.2013
Autor: meili

Hallo,


> > Übrigens finde ich es hier am einfachsten, wenn Du das
> > sogar einfach so
> > machst, also sagst:
>  >  "Gelte [mm]\IR \ni r_n \to 0[/mm]..."
>  >  und dann begründe,
> dass
> > [mm]|f(r_n)| \le |r_n|[/mm] gilt. Denn was folgt denn
> > insbesondere für die Folge [mm](|r_n|)_n\,,[/mm] wenn [mm]\IR \ni r_n \to 0[/mm]?)
>  
> >  

>
> Also für die Filge [mm](|r_n|)_n\,,[/mm] folgt aus [mm]\IR \ni r_n \to 0[/mm]?)
> dass natürlich auch [mm](|r_n|)_n\,,[/mm] gegen 0 konvergiert. Mehr
> würde mir für die Folge jetz nicht einfallen.

Das genügt ja auch.

Wichtig ist, dass Du [mm] $\limes_{n\rightarrow\infty} f(r_n) [/mm] = 0$ zeigst.

Dazu  reicht es (siehe oben), wenn [mm] $\limes_{n\rightarrow\infty} |r_n| [/mm]  = 0$ ist,
aber gut wäre noch eine Begründung zu finden,
warum  [mm]|f(r_n)| \le |r_n| \quad \forall n \in \IN[/mm] gilt.

>  
> > Dass Dein obiges "es gibt" keinen Sinn macht, um die
> > Aufgabe zu lösen,
>  >  zeigt das einfache Beispiel von
> > [mm]g \colon \IR \to \IR[/mm]
>  >  definiert durch
>  >  [mm]g(x):=\begin{cases} 1, & \mbox{für } x \in \IQ \cap [0,\,\infty) \\ 0, & \mbox{für } x \in (\IR \setminus \IQ) \cap [0,\,\infty)\\0, & \mbox{für } x \in \IQ \cap (-\infty,\,0)\\1, & \mbox{für } x \in (\IR \setminus \IQ) \cap (-\infty,\,0) \end{cases}\,.[/mm]
>  
> >  

> > Diese Funktion ist unstetig in [mm]x_0=0\,,[/mm] dennoch gibt es
> > sowohl eine
> > Folge [mm](x_n)_n[/mm] in [mm]\IQ[/mm] mit [mm]\lim g(x_n)=\lim 1=g(0)[/mm] (bspw.
> > [mm]x_1=1/n[/mm])
> > und es gibt auch eine Folge [mm](y_n)_n[/mm] in [mm]\IR \setminus \IQ[/mm]
> > mit [mm]\lim g(y_n)=\lim 1=g(0)\,[/mm]
> > (bspw. [mm]y_n=-\sqrt{2}/n[/mm]).
> >
> > Gruß,
>  >    Marcel  

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]