www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit im R²
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Stetigkeit im R²
Stetigkeit im R² < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Sa 10.07.2004
Autor: Micha

Hallo!
der Beweis sollte ziemlich banal sein, aber ich bekomme ihn nich hin. Gegeben ist eine Funktion
[mm] µ : \IR^2 \rightarrow \IR , (x_1 , x_2) \to x_1 x_2 [/mm]

Zu zeigen ist, dass µ stetig ist. Für
[mm] \alpha : \IR^2 \rightarrow \IR , (x_1, x_2 ) \to x_1 + x_2 [/mm] wurde der Beweis vorgemacht. Ein Einzeiler:

[mm] d(\alpha (x_k ), \alpha (p)) = \left| (x_{k1} + x_{k2}) - (p_1 + p_2) \right| \le \left| x_{k1} - p_1 \right| + \left| x_{k2} + p_2\right|[/mm]
und dann folgert er: [mm] \lim \alpha (x_k) = \alpha (p) [/mm] und damit die Komponenten gegen null, damit die rechte Seite = 0 und damit alpha stetig. Der beweis ist für mich auch einleuchtend, aber bei der Multiplikation komm ich nich weiter :-(

Vielen Dank schonmal, euer Micha

PS: Ich liebe solche Beweise in Scripten, wo einem eigentlich alles klar sein solte... *Ironie ON*

        
Bezug
Stetigkeit im R²: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Sa 10.07.2004
Autor: andreas

hi Micha

das ist so ein standardtrick, den man halt einmal gesehn haben muss:
sei also [m] x^k = (x_1^k, x_2^k) \stackrel{k \to \infty}{\longrightarrow} x = (x_1, x_2) [/m] eine gegen x kovergente folge, dann gilt:

[m] | \alpha(x) - \alpha(x^k) | = |x_1 x_2 - x_1^k x_2^k| =| x_1 x_2 - x_1^k x_2 + x_1^k x_2 - x_1^k x_2^k | = | x_2( x_1 - x_1^k) + x_1^k (x_2 - x_2^k) | \leq | x_2( x_1 - x_1^k)| + | x_1^k (x_2 - x_2^k) | = |x_2|| x_1 - x_1^k| + |x_1^k||x_2 - x_2^k| [/m]

der letzte term geht aber für k gegen unendlich gegen null (beim ersten summanden ist das klar - beim zweiten kannst du dir das mal kurz überlegen. kleiner tipp: beschränktheit konvergenter folgen). daraus folgt dann aber auch die stetigkeit von alpha!

probiere mal, ob du alleine weiterkommst und den beweis vielleicht noch etwas formaler führen kannst, sonst melde dich einfach nochmal!

gruß andreas

Bezug
                
Bezug
Stetigkeit im R²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Sa 10.07.2004
Autor: Micha

hmm, soweit war ich ja, nur die Argumentation am Ende hat mir noch gefehlt. Fazit: Formal kann ichs ja, nur ich trau mich irgendwie nich, sowas daraus zu folgern..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]