Stetigkeit mehrere Variable < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:22 Mo 04.06.2012 | Autor: | PTech |
Aufgabe | Untersuchen Sie folgende Funktionen bzgl Stetigkeit; geben Sie, soweit vorhanden, die Grenzwerte [mm] \limes_{x\rightarrow\circ} [/mm] ( [mm] \limes_{y\rightarrow\circ} [/mm] f(x,y) ) , [mm] \limes_{y\rightarrow\circ} (\limes_{x\rightarrow\circ} [/mm] f(x,y)) , [mm] \limes_{x,y\rightarrow\circ} [/mm] f(x,y) an.
[mm] f(x,y)=\begin{cases} ((2*x*y^2)/(x^2+y^4)), & \mbox{für } x,y \mbox{ungleich 0} \\ 0, & \mbox{für } x,y \mbox{ =0} \end{cases} [/mm] |
Hallo!
Ich habe nun die Aufgabe versucht in 3 teilen zu lösen. Zunächst habe ich eine Annhäherung mit y=0 (x-achse) durchgeführt, danach eine mit x=0 und zuletzt eine Annäherung mit y=x.
dazu habe ich jeweils x oder y = 0, bzw. x=y gesetzt und dann die grenzwertberechnung durchgeführt. Bei x=y konnte ich etwas kürzen und dann den Grenzwert berechnen. Ich bekomme nun bei allen 3 grenzwerten 0 heraus. Ist das korrekt? Ist die Vorgehensweise dir richtige?
Schon jetzt vielen lieben Dank für die Hilfen!
Ptech
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:40 Di 05.06.2012 | Autor: | fred97 |
> Untersuchen Sie folgende Funktionen bzgl Stetigkeit; geben
> Sie, soweit vorhanden, die Grenzwerte
> [mm]\limes_{x\rightarrow\circ}[/mm] ( [mm]\limes_{y\rightarrow\circ}[/mm]
> f(x,y) ) , [mm]\limes_{y\rightarrow\circ} (\limes_{x\rightarrow\circ}[/mm]
> f(x,y)) , [mm]\limes_{x,y\rightarrow\circ}[/mm] f(x,y) an.
>
> [mm]f(x,y)=\begin{cases} ((2*x*y^2)/(x^2+y^4)), & \mbox{für } x,y \mbox{ungleich 0} \\ 0, & \mbox{für } x,y \mbox{ =0} \end{cases}[/mm]
>
> Hallo!
>
> Ich habe nun die Aufgabe versucht in 3 teilen zu lösen.
> Zunächst habe ich eine Annhäherung mit y=0 (x-achse)
> durchgeführt, danach eine mit x=0 und zuletzt eine
> Annäherung mit y=x.
> dazu habe ich jeweils x oder y = 0, bzw. x=y gesetzt und
> dann die grenzwertberechnung durchgeführt. Bei x=y konnte
> ich etwas kürzen und dann den Grenzwert berechnen. Ich
> bekomme nun bei allen 3 grenzwerten 0 heraus. Ist das
> korrekt? Ist die Vorgehensweise dir richtige?
>
> Schon jetzt vielen lieben Dank für die Hilfen!
> Ptech
Warum tust Du nicht das, was verlangt ist.
Untersuche ob $ [mm] \limes_{x\rightarrow\circ} [/mm] $ ( $ [mm] \limes_{y\rightarrow\circ} [/mm] $ f(x,y) ) ex. und welchen Wert dieser GW eventuell hat.
Untersuche ob $ [mm] \limes_{y\rightarrow\circ} [/mm] $ ( $ [mm] \limes_{x\rightarrow\circ} [/mm] $ f(x,y) ) ex. und welchen Wert dieser GW eventuell hat.
Für $ [mm] \limes_{x,y\rightarrow\circ} [/mm] $ f(x,y) betrachte [mm] x=y^2
[/mm]
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:10 Di 05.06.2012 | Autor: | PTech |
Hallo!
Ich habe ja durchaus versucht es zu lösen wie es in der Aufgabe steht. das war nun einmal meine Interpretation dazu..
Was heißt ex.?
Ich verstehe dann anscheinend nicht richtig was mit lim (lim) gemeint ist...mir ist schon klar, dass jeweils x und dann y behandel, aber ich weiß nicht genau wie.
Ich habe das jetzt so interpretiert, dass ich den Grenzwert für x gegen Null finden soll für den fall dass y=0. und umgekehrt.
Warum [mm] x=y^{2}, [/mm] woran erkenne ich das?
Vielen Dank!
MfG Ptech
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:16 Di 05.06.2012 | Autor: | PTech |
Ich habe nun die Aufgabe mit [mm] x=y^{2} [/mm] gerechnet und bekomme durch kürzen den Wert 1 heraus.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:49 Di 05.06.2012 | Autor: | chrisno |
> Ich habe nun die Aufgabe mit [mm]x=y^{2}[/mm] gerechnet und bekomme
> durch kürzen den Wert 1 heraus.
Was folgt daraus für die Stetigkeit?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:57 Di 05.06.2012 | Autor: | chrisno |
> Hallo!
> Ich habe ja durchaus versucht es zu lösen wie es in der
> Aufgabe steht. das war nun einmal meine Interpretation
> dazu..
In der Aufgabe sollen Grenzwerte bestimmt werden. Da ist noch nichts zu sehen.
> Was heißt ex.?
Existiert.
> Ich verstehe dann anscheinend nicht richtig was mit lim
> (lim) gemeint ist...mir ist schon klar, dass jeweils x und
> dann y behandel, aber ich weiß nicht genau wie.
Nun musst Du mal die Karten auf den Tisch legen. Kannst Du mit Grenzwerten umgehen?
> Ich habe das jetzt so interpretiert, dass ich den
> Grenzwert für x gegen Null finden soll für den fall dass
> y=0. und umgekehrt.
Bestimme den Grenzwert für x gegen Null. Schreibe ihn hier auf.
Nimm diesen Grenzwert und untersuche, was passiert, wenn Du nun davon versuchst den Grenzwert für y gegen Null zu bestimmen.
Als Nächstes:
Bestimme den Grenzwert für y gegen Null. Schreibe ihn hier auf.
Nimm diesen Grenzwert und untersuche, was passiert, wenn Du nun davon versuchst den Grenzwert für x gegen Null zu bestimmen.
Das steht so in der Aufgabe.
> Warum [mm]x=y^{2},[/mm] woran erkenne ich das?
Das ist ein netter Tipp, damit Du Dir viel Arbeit sparen kannst.
|
|
|
|