www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit nachweisen
Stetigkeit nachweisen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit nachweisen: Stetigkeit von x^2+1
Status: (Frage) beantwortet Status 
Datum: 01:39 Mo 16.03.2009
Autor: MHOOO

Hi,

ich wollte ganz gerne die Stetigkeit von $f : [mm] \IR \rightarrow \IR, [/mm] x [mm] \mapsto x^2 [/mm] + 1$ zeigen.
Hier mal mein Ansatz. Bin mir aber nicht sicher ob der so korrekt ist (insbesondere die Wahl des [mm] \delta [/mm] ).
Sei $f : [mm] \IR \rightarrow \IR, [/mm] x [mm] \mapsto x^2 [/mm] + 1$.
Vorraussetzung zur Stetigkeit: [mm] $\forall \epsilon [/mm] > 0 [mm] \exists \delta>0 [/mm] : |x - y| < [mm] \delta \Rightarrow [/mm] |f(x) - f(y)| < [mm] \epsilon$ [/mm]
Nun ist:
$|f(x) - f(y)| = [mm] |x^2+1 [/mm] - [mm] (y^2+1)| [/mm] = [mm] |x^2 [/mm] - [mm] y^2 +1\!\!\!/ -1\!\!\!/|$ [/mm]
$= [mm] \frac{(x^2 - y^2)(x - y)}{(x - y)} [/mm] = [mm] \frac{(x^3 - x^2y - y^2x + y^3)}{(x - y)}$ [/mm]
Wähle nun [mm] $\delta [/mm] = [mm] (x^3 [/mm] - x^2y - y^2x + [mm] y^3)\frac{2}{\epsilon}$ [/mm]
Dann ist:
[mm] $\frac{(x^3 - x^2y - y^2x + y^3)}{(x - y)} \le \frac{(x^3 - x^2y - y^2x + y^3)}{(x^3 - x^2y - y^2x + y^3)\frac{2}{\epsilon}}$ [/mm]
$= [mm] \frac{\epsilon}{2} [/mm] < [mm] \epsilon$ [/mm]
Somit ist f stetig.

Wäre das so in Ordnung?

Würde mich über Antwort freuen.

Schönen Gruß,
MHOOO

        
Bezug
Stetigkeit nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Mo 16.03.2009
Autor: schachuzipus

Hallo MHOO,

> Hi,
>  
> ich wollte ganz gerne die Stetigkeit von [mm]f : \IR \rightarrow \IR, x \mapsto x^2 + 1[/mm]
> zeigen.
>  Hier mal mein Ansatz. Bin mir aber nicht sicher ob der so
> korrekt ist (insbesondere die Wahl des [mm]\delta[/mm] ).
>  Sei [mm]f : \IR \rightarrow \IR, x \mapsto x^2 + 1[/mm].
>  
> Vorraussetzung

Bitte nur ein "r" !!

> zur Stetigkeit: [mm]\forall \epsilon > 0 \exists \delta>0 : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon[/mm]
>  
> Nun ist:
>  [mm]|f(x) - f(y)| = |x^2+1 - (y^2+1)| = |x^2 - y^2 +1\!\!\!/ -1\!\!\!/|[/mm] [ok]
>  
> [mm]= \frac{(x^2 - y^2)(x - y)}{(x - y)} = \frac{(x^3 - x^2y - y^2x + y^3)}{(x - y)}[/mm]

Puh, mache es dir doch nicht schwerer als nötig.

Wie wär's mit der 3. binomischen Formel?

[mm] $|x^2-y^2|=|(x-y)\cdot{}(x+y)|=|x-y|\cdot{}|x+y|=|x-y|\cdot{}|x-y+2y|\le|x-y|\cdot{}(|x-y|+2\cdot{}|y|)$ [/mm] nach der [mm] $\triangle$-Ungleichung [/mm]

>  
> Wähle nun [mm]\delta = (x^3 - x^2y - y^2x + y^3)\frac{2}{\epsilon}[/mm]

Obacht, das [mm] $\delta$ [/mm] darf von [mm] $\varepsilon [/mm] $ und $y$ abhängen, keinesfalls jedoch von x !

>  
> Dann ist:
>  [mm]\frac{(x^3 - x^2y - y^2x + y^3)}{(x - y)} \le \frac{(x^3 - x^2y - y^2x + y^3)}{(x^3 - x^2y - y^2x + y^3)\frac{2}{\epsilon}}[/mm]
>  
> [mm]= \frac{\epsilon}{2} < \epsilon[/mm]
>  Somit ist f stetig.
>  
> Wäre das so in Ordnung?

Nee, du hast es dir zu kompliziert gemacht, siehe oben die Anmerkung zur Wahl von [mm] $\delta$ [/mm]

Kannst du mit meiner Umformung [mm] $|f(x)-f(y)|\le|x-y|\cdot{}(|x-y|+2\cdot{}|y|)$ [/mm] nun ein [mm] $\delta$ [/mm] ( in Abh. von [mm] $\varepsilon$ [/mm] und/oder $y$), so dass für [mm] $|x-y|<\delta$ [/mm] schließlich [mm] $|f(x)-f(y)|<..<\varepsilon$ [/mm] rausspringt?

>  
> Würde mich über Antwort freuen.
>  
> Schönen Gruß,
>  MHOOO

Dir auch und nun [gutenacht]

schachuzipus

Bezug
                
Bezug
Stetigkeit nachweisen: bestimmung des delta
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 16.03.2009
Autor: MHOOO

Hallo schachuzipus,

erst einmal vielen Dank für die Antwort. Dass man das [mm] \delta [/mm] nicht in Abhängigkeit vom x wählen darf war mir neu - demnach habe ich das bisher immer falsch gemacht :(

Ich habe deinen Ansatz mit [mm] $\delta \in \{\frac{yk}{2}, -2y\sqrt{\epsilon}, \frac{\sqrt{\epsilon}}{\sqrt[4]{\epsilon}}, \frac{\sqrt{\epsilon}}{2|y|}, ...\}$ [/mm]
versucht zu lösen (man beachte das diese Werte willkürlich aus dem Bauch her gewählt sind) - und dabei auch zugesehen dass ich nach oben hin abschätze. Allerdings schätze ich dann oft über [mm] \epsilon [/mm] hinaus auf, sodass eine falsche Aussage entsteht. Gibt es vielleicht einen Trick dazu wie man das [mm] \delta [/mm] einfach bestimmen kann?

Würde mich über Antwort freuen.

Schönen Gruß,
MHOOO

Bezug
                        
Bezug
Stetigkeit nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Mo 16.03.2009
Autor: fred97

Du willst also die Stetigkeit von f in y nachweisen. Dazu kannst Du annehmen, dass |y-x| < 1 ist und somit |x|< 1+|y|


Dann:

    $|f(x) -f(y)| = |x+y| |x-y| [mm] \le [/mm] (|x|+|y|)|x-y| [mm] \le [/mm] (1+2|y|)|x-y|$

Sei [mm] \varepsilon [/mm] > 0  

Nebenrechnung: $(1+2|y|)|x-y|$ < [mm] \varepsilon \gdw [/mm] |x-y| < [mm] \bruch{\varepsilon }{1+2|y|} [/mm]


Jetzt siehst Du, dass Du  [mm] \delta [/mm] = min { 1,  [mm] \bruch{\varepsilon }{1+2|y|} [/mm]  } wählen kannst

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]